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Abstract— Ear-electroencephalography (ear-EEG) is a
discreet, wearable EEG alternative suitable for ambulatory and
long-term monitoring, especially with rising demand for smart
wearables and increasing neurological disorders. Its wider
adoption has been limited by reduced signal quality. The Fitting
Oscillations and One-Over-f (FOOOF) algorithm, used in scalp-
EEG to separate periodic brain rhythms from the non-
oscillatory aperiodic component, may improve interpretability.
This study presents the first application of FOOOF to ear-EEG,
assessing its ability to produce reliable, scalp-equivalent neural
metrics. Synchronous scalp and ear-EEG were recorded during
resting state and alpha block paradigms. A calibrated FOOOF
pipeline extracted periodic and aperiodic activity. Results
showed that FOOOF improved comparability between
modalities, particularly between ear and inter-hemispheric scalp
configurations. Periodic metrics showed strong agreement, with
correlations up to 0.90 between FOOOF-adjusted peak alpha
power in ear- and scalp-EEG. The aperiodic exponent showed
no significant differences between them. These findings indicate
that single-channel ear-EEG, when processed with FOOOF, can
deliver accurate neural metrics comparable to scalp-EEG. This
positions ear-EEG as a promising tool for outpatient neuro-
monitoring, with potential applications in epilepsy, cognitive
decline, and sleep disorder assessment.

Clinical Relevance— FOOOQOF-adjusted ear-EEG could
enhance ambulatory, non-intrusive wearable technology, with
applications in neurodegenerative disease diagnosis, monitoring,
and wellness.

I. INTRODUCTION

Conventional scalp-electroencephalography (EEG) offers
high temporal resolution but remains bulky and impractical
for continuous, real-world health monitoring [1, 2]. Ear-EEG
— using electrodes placed in or around the ear — is a promising
wearable alternative but suffers from weakened signals,
including lower amplitudes and signal-to-noise ratios (SNR)
[3-5]. Nevertheless, dry electrode ear-EEG systems, such as
the IDUN earbuds, can capture neurologically relevant
oscillations like alpha rhythms during the resting state (RS)
and alpha block [6]. More generally, Looney et al.
demonstrated that ear-EEG can reliably detect significant
alpha desynchronizations, such as the expected reduction in
alpha power following eye opening, despite its inherently
weaker signal characteristics [1].

Recent EEG signal analysis has emphasized the
importance of distinguishing between periodic and aperiodic
components of the power spectral density (PSD), the latter
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exhibiting 1/f-like behavior [7, 8]. Periodic activity reflects
synchronized neural oscillations linked to cognitive and
behavioral states, whereas aperiodic features provide insight
into background neural activity, cortical excitability, and
neurodevelopmental conditions. The Fitting Oscillations and
One-Over-f (FOOOF) algorithm models these components
separately, improving both interpretability and diagnostic
utility [7].

Traditional EEG analysis often conflates periodic
components, leading to ambiguous results [9]. FOOOF
iteratively models the EEG PSD by fitting Gaussian functions
to oscillatory peaks while simultaneously modeling the
aperiodic activity using power-law fitting. This effectively
separates these components to extract metrics such as peak
frequencies, bandwidth, and power, alongside aperiodic
parameters (exponent and offset). While most decomposition
techniques isolate oscillatory activity, only FOOOF explicitly
models the aperiodic background, yielding more reliable,
specific, and interpretable neural markers. As demonstrated
across the literature [7-12], FOOOF-derived features have
been successfully applied in a range of clinical contexts.
These include outpatient applications such as anesthesia depth
monitoring via more accurate delta wave tracking and
cognitive fatigue assessment [8], as well as neurological
disorders like age-related neural decline [8-10], schizophrenia
[11], and epilepsy [12]. Together, these applications have
demonstrated distinct improvements over conventional
approaches in enhancing patient outcomes. However,
FOOOF has yet to be applied to ear-EEG, limiting its use in
wearable, ambulatory monitoring contexts.

Given the inherent limitations of ear-EEG and the
challenges in realizing FOOOEF’s potential, this study
explores their synergy by presenting the first systematic
application of FOOOF to single-channel ear-EEG. The study
validates its compatibility, comparing FOOOF-derived
metrics between the ear and scalp, and evaluating signal
quality to identify scalp configurations most correlated with
ear-EEG. This work lays the groundwork for a viable solution
for continuous brain monitoring beyond laboratory settings.

II. METHODS

A. Participants

Sixteen healthy adults (mean age = 22.5 + 2.2 years; 5
males, 11 females) participated, with eight datasets obtained
from a previous ear-EEG validation study using an identical
methodology to ensure consistency [13]. Participants without
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neurological disorders or implants were selected to minimize
confounding factors [13]. Both sexes were included based on
recruitment availability. Ethical approval was granted by the
Trinity College Dublin Research Ethics Committee (Ref:
3831), and participants provided informed consent.

B. Data Collection

Brain activity was recorded synchronously using ear- and
scalp-EEG. For ear-EEG, single-channel IDUN Guardian
Earbuds (IDUN Technologies AG) were utilized, with the
right ear referenced to the left ear electrode. Participants
inserted the sanitized earbuds, which were then adjusted for fit
and to maintain impedance below 300 kQ. Wireless data
streaming was performed at 250 Hz using Python SDK. A 24-
channel scalp-EEG cap (Easycap GmbH, Germany) was used
as the reference for characterization. Cap sizes were adjusted
for individual anatomy, with impedance maintained below 20
kQ wusing conductive gel. mBrainTrain Mobi amplifier
(mBrainTrain LLC, Belgrade) was used to collect data at 250
Hz, with wireless transmission via a BlueSoleil v10 USB
dongle. Paradigms were implemented using the validated
EaR-P Lab application, with temporal synchronization
ensured via LabStreaming Layer (LSL, Swartz Centre for
Computational Neuroscience, UC San Diego, USA) across the
Python SDK, mBrainTrain, and EaR-P Lab data streams [14].
All applications were run on a Dell laptop positioned 60 cm
from participants at eye level, with auditory stimuli delivered
using HD 280 Pro headphones (Sennheiser, Germany) at 10%
volume in a non-shielded behavioral testing room.

EEG paradigms consisted of a five-minute resting state
(RS) recording and a four-minute Alpha Block task with one-
minute alternating eyes open (EO) and eyes closed (EC). Data
recordings proceeded without issues, allowing all datasets to
be retained for analyses. However, the raw RS EEG file for
Participant 3 and the Alpha Block EEG file for Participant 8
from the previous study were unreadable, likely due to file
corruption, and were excluded.

C. Pre-Processing and FOOOF Application

Raw EEG data from the RS and Alpha Block paradigms
were pre-processed using custom MATLAB scripts
(MATLAB R2024b, The MathWorks Inc., Natick, MA,
USA). All scripts are publicly available on GitHub
(https://github.com/rakotc/Parameterization-of-Ear-EEG).
The Alpha Block data was separated into EC and EO segments
using synchronized markers, resulting in three conditions
overall: RS, EC, and EO. Both modalities’ signals were band-
pass filtered (1 to 100 Hz) to remove artifacts and drifts, with
a 50 Hz notch filter applied to reduce powerline noise.
Independent Component Analysis (ICA) was not used due to
the single-channel nature of ear-EEG and to ensure unbiased
comparison across modalities. Scalp-EEG was referenced into
three configurations (T7-Oz, T8-Oz, T7-T8). PSDs were
calculated using Welch’s method with 2 s windows and 50%
overlap.

FOOOF parameters were tuned on a subset of data from
different subjects across RS, EC, and EO conditions using the
T7-Oz and T8-Oz configurations. An iterative MATLAB
script optimized parameters based on goodness-of-fit metrics
to avoid under- and overfitting. The final parameters
(maximum peaks = 11, minimum peak height = 0.05, peak

threshold ratio = 1.5 and peak width limits = [1.1, 7] Hz)
achieved a strong quality fit (mean R* = 0.97), and the
parameters generalized well to other configurations, including
ear-EEG where the highest fit correlation was obtained (R? =
0.985, Fig. 1 (A) and (B)).

FOOOF was applied to data in the 2 to 100 Hz range, and
fixed or knee aperiodic models were selected based on the
best quantitative fit quality. The algorithm extracted periodic
parameters (peak power, frequency, bandwidth) and aperiodic
parameters (exponent, offset), along with fit metrics. The
alpha band (8 to 12 Hz) peak power and SNR in decibels,
calculated via equation (1), were used to analyze oscillatory
activity for all conditions and configurations. Similarly, the
aperiodic exponent was used to characterize background
neural activity.

SNR = Average Alpha Powerg; — Average Alpha Poweryg, (1)
D. Statistical Analyses

The statistical analyses addressed the study's three primary
aims and were carried out using custom MATLAB scripts and
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Fig. 1. Decomposition of EC average PSD into periodic and aperiodic fits
using FOOOF, for different configurations: (A) Ear, and (B) T7-Oz (n = 15).

Prism 10 (GraphPad Software, Boston, USA). Outliers were
identified using a ROUT test (Q = 1%), and normality was
assessed using the Shapiro-Wilk test. G¥*Power was used to
examine non-significant results for statistical power further.



To validate the cohort datasets, inter-gender comparisons
of pre-and post-FOOOF peak alpha power and SNR, as well
as aperiodic exponent, were conducted across all conditions
and configurations using unpaired t-tests or Wilcoxon rank-
sum tests, depending on data distribution. Validation of
FOOOF’s performance involved comparing pre- and post-
FOOOF peak alpha power and SNR values within each
configuration (Ear, T7-Oz, T8-Oz, T7-T8) across the RS, EC,
and EO conditions, using paired t-tests or Wilcoxon signed-
rank tests.

Inter-configuration comparisons were made to evaluate
ear-EEG relative to scalp-EEG by comparing peak alpha
power, SNR, and aperiodic exponent values across conditions,
again using the appropriate statistical tests. Correlations
between ear and scalp configurations were assessed using
Spearman correlation, utilized for its robustness to non-normal
data distributions. To assess hemispheric balance and the
representativeness of  inter-hemispheric  configurations,
comparisons were made between T7-Oz and T8-Oz for peak
alpha power, SNR, and aperiodic exponent. Following this, a
gold-standard average of the T7-Oz and T8-Oz metrics was
computed and compared to the T7-T8 and ear-EEG
configurations to evaluate their signal quality. All analyses
followed consistent procedures to ensure comparability and
reliability across metrics and conditions.

III. RESULTS

A. Validation of FOOOF for Ear-EEG

Given the absence of significant differences in periodic and
aperiodic activities between genders (p > 0.05), the full dataset
was utilized for characterization. Post-hoc power calculations
indicated values above 0.85 for all comparisons, confirming
sufficient sensitivity to detect effects within the cohort.
Subsequently, scalp configurations consistently exhibited
reductions in peak alpha power across all conditions. For
example, T7-Oz demonstrated a 24% decrease in RS and a
significant reduction in EC (p < 0.001). In contrast, ear-EEG
showed a consistent but nonsignificant increase in peak alpha
power, including a 1.42-fold rise in RS and up to a 2.79-fold
in the EO condition.

Nonetheless, all configurations demonstrated a reduction
in the SNR post-FOOOF, with this drop being significant for
all scalp configurations (p < 0.01), but not for ear-EEG (p >
0.05).

B. Inter-Configuration Comparisons

As illustrated in Fig. 2 (A) — (F), FOOOF adjustment
reduced the magnitude of differences in peak alpha power
between modalities across all conditions. Importantly, the
largest reduction was 59% in the EO condition between the ear
and T7-Oz. For EC, the ear’s peak alpha power remained
significantly lower than hemispheric scalp configurations (p <
0.05), but not compared to T7-T8 (p > 0.05). In contrast, as
shown in Fig. 2 (A) and (B), discrepancies in RS between the
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Fig. 2. Comparison of ear-EEG and scalp-EEG configurations before and after FOOOF adjustment across various conditions. (A) Peak alpha power in RS
- Pre-FOOOF, (B) FOOOF-adjusted periodic fit; (C) Peak alpha power in EO - Pre-FOOOF, (D) FOOOF-adjusted periodic fit; (E) Peak alpha power in
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ear and T7-T8 reduced from highly significant (p < 0.0001) to
nonsignificant (p > 0.05) post-FOOOF.

Correlation analyses summarized in Table 1 confirmed that
T7-T8 exhibited the strongest positive correlation with ear-
EEG in peak alpha power, with a post-FOOOF coefficient of
0.90 during EO. Regarding the aperiodic exponent, no
consistent configuration correlated best with the ear. Although
the ear showed the lowest exponent in the RS condition (1.56
+ 0.36), no significant differences were observed between the
ear and scalp configurations across any condition (p > 0.05).
Generally, Fig. 2 (G) illustrates the RS results as representative
of this broader pattern across all conditions. Moreover, post-
hoc power calculations exceeded 0.92 for all conditions,
supporting the adequacy of detecting these effects using this
sample size.

Further analysis of Table 1 revealed that, while the ear
originally exhibited comparable correlations with T7-Oz and
T8-Oz, some deviations emerged in the RS condition
following FOOOF adjustment, in both peak alpha power and
aperiodic exponents. In line with this variability, eye closure
demonstrated improved correlations post-FOOOF, whereas no
clear pattern was observed for the RS and EO conditions.

C. Quality Evaluation Against Hemispheric Gold Standard

To establish a gold standard, parameters from T7-Oz and
T8-0z were compared. No significant differences in FOOOF-
adjusted peak alpha power, SNR, or aperiodic exponent were
found between the two hemispheric configurations across all
conditions. Therefore, their average was used as the reference
standard for evaluating the quality of the ear and T7-T8 inter-
hemispheric configurations.

Post-FOOOF, both configurations exhibited varying
reductions in statistical significance relative to the reference.
For instance, in some conditions (e.g., RS), the T7-T8
configuration became nonsignificant, while in others (e.g., EC,

TABLE 1. CORRELATION BETWEEN EAR AND SCALP CONFIGURATIONS
ACROSS CONDITIONS. COLOR SCALE RANGES FROM NEGATIVE CORRELATION
(RED) TO POSITIVE CORRELATION (GREEN).
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Fig. 3. Comparison of ear and scalp inter-hemispheric configurations against
the average scalp hemispheric gold standard. (A) EC peak alpha power and
(B) SNR. Values are presented as mean + SD (n = 15). **p < 0.01, ***p <
0.001, ****p <0.0001.

Fig. 3 (A)), significant differences remained (ear: p <0.01, T7-
T8: p <0.0001). Similarly, no consistent SNR trend emerged
across conditions, but ear-EEG remained more comparable to
the gold reference post-FOOOF, as seen in Fig. 3 (B) (p <
0.01). A statistical power calculation exceeding 0.90 further
supported the reliability of these findings.

IV. DISCUSSION

Dataset validation confirmed the absence of significant
gender-based differences in periodic and aperiodic
components within the narrow, healthy demographic and
aligned with known trends in alpha power, thus supporting the
robustness of the cohort [9, 15]. Applying FOOOF to scalp-
EEG performed as expected, reducing periodic activity due to
the removal of 1/f aperiodic noise. In contrast, ear-EEG
showed nonsignificant increases in peak alpha power post-
FOOOF. This may be due to the absence of artifact rejection,
which can leave residual non-neural noise, such as muscle and
motion artifacts, unaddressed. In noisy modalities like ear-
EEG, narrowband transient artifacts may not be captured by
the aperiodic fit, causing them to be misclassified as periodic
peaks. Consequently, residual noise can inflate peak power
estimates, diminishing the effectiveness of the FOOOF
decomposition.  Nonetheless, artifact rejection was
deliberately excluded to avoid bias, particularly because
standard methods, such as ICA, are incompatible with single-
channel ear-EEG, and alternative techniques lack validation or
impose a significant computational load [7].



Despite a persistent lower absolute peak alpha power, ear-
EEG became more comparable to scalp recordings following
FOOOF adjustment. The strongest correspondence was
observed with the inter-hemispheric configuration T7-T8,
which showed correlation coefficients of up to 0.90 and
improvements in both EC and EO conditions (Fig. 2 (A) — (F)).
This reflects the anatomical proximity between the ear and the
latter, which results in the detection of more comparable
volume-conducted signals. Thus, while all configurations
measure the same neural sources, the characteristics of these
periodic signals are strongly influenced by spatial sampling as
explored in the literature [2, 9]. Contrarily, aperiodic
parameters remained consistent across all sites, reinforcing the
spatial invariance and robustness of the aperiodic exponent —
even in noisier, single-channel ear-EEG such as those
analyzed without artifact rejection. This spatial invariance
arises from the global nature of aperiodic activity, which
reflects large-scale cortical dynamics and the brain-wide
balance between excitatory and inhibitory processes; these
features are less dependent on the signal sources [7, 9, 11].

Most importantly, signal quality assessment addressed a
key gap in the literature. Although FOOOF did not
consistently improve signal quality in either modality
compared to the gold reference, both ear-EEG and inter-
hemispheric scalp configurations showed no clear advantage
over each other, demonstrating similar variability in spectral
fidelity relative to the reference while maintaining
comparability between themselves. Separating periodic and
aperiodic components is particularly crucial for ear-EEG,
where the inherently lower signal amplitudes and higher
susceptibility to noise and motion artifacts traditionally make
it difficult to distinguish genuine neural activity from
broadband distortions. However, FOOOF’s explicit modeling
and isolation of both periodic and aperiodic activity in ear-
EEG - unlike conventional decomposition algorithms —
mitigated these issues, improving interpretability and
minimizing differences between ear- and scalp-EEG. These
findings represent a significant advancement toward more
user-friendly, effective, and personalized treatment of
neurological disorders — including dementia [9, 10, 16, 17],
schizophrenia [11], and epilepsy [16, 17] — as well as sleep
disorders [16-18]. This progress is driven by the reliable
decomposition of ear-EEG PSDs. While prior studies have
demonstrated the feasibility of ear-EEG-based monitoring for
these conditions, challenges with signal quality compared to
scalp-EEG have limited diagnostic accuracy — a limitation that
this novel combined approach can effectively overcome.

Nonetheless, these findings should be interpreted in light
of the inter-subject variability observed in ear-EEG, likely
stemming from anatomical differences and the inevitable
constraints of generic-fitting earbuds [3, 6]. This variability
contributed to a larger SNR variation reflected by a greater
standard deviation, highlighting the need for artifact rejection
and improved device ergonomics to ensure reliable real-world
use. It may also account for the lower correlations observed
post-FOOOF in Table 1, despite the absence of significant
differences in the corresponding measures (Fig. 2 (QG)).
Furthermore, the restricted demographic may have limited
neural variability, as gender- and age-related EEG differences
typically emerge later in life due to cumulative neurostructural
and hormonal changes [9]. Thus, while post-hoc power

analyses and effect sizes indicated sufficient sensitivity, the
statistical generalizability of these findings must be validated
in future studies employing larger and more diverse cohorts.
Given the projected use of FOOOF-adjusted ear-EEG for
outpatient and long-term monitoring in real-world settings,
addressing these limitations is critical to ensure reliable and
robust performance across various populations and conditions.

While this study establishes the foundational
comparability of ear-EEG to gold standard configurations, its
practical deployment for mobile brain monitoring demands
further investigation. This begins with the identification of
compatible artifact rejection methods; Noise-Assisted
Multivariate Empirical Mode Decomposition has been
proposed, but its validity and computational feasibility remain
underexplored [19]. Alternatively, the FOOOF algorithm itself
could be adapted to better handle the distinct noise
characteristics of ear-EEG. For instance, condition-specific
frequency fitting windows could exclude artifact-dominant
bands, and penalty-informed fitting — which suppresses
abnormally located peaks and steep slopes using
regularization, could improve robustness. These modifications
may address the non-oscillatory-like behavior observed within
the FOOOF-adjusted periodic fit beyond 15 Hz (Fig. 1), as
well as the inconsistent correlation patterns between ear and
scalp configurations across conditions (Table 1), both of which
likely reflect the residual artifacts in the current FOOOF-
adjusted fits.

Beyond these algorithmic improvements, FOOOF-
adjusted ear-EEG must be validated under ecologically valid
conditions involving longer durations and participant
movement to evaluate its performance in realistic settings.
Moreover, while FOOOF-adjusted ear-EEG shows promise
for ambulatory monitoring, its current implementation —
requiring the complete signal — restricts its use in live
applications. Considering the surge in wearable technologies,
future work should explore whether FOOOF can be
implemented in real-time, such as through an overlapping-
window PSD estimation and gradual update of parameters.
This development would extend this technology’s utility
beyond neurological diagnostics to broader applications in
health and wellness, leveraging EEG’s ability to capture
systemic physiological states [9].

Taken together, the statistical equivalence between ear-
EEG and the clinically accepted T7-T8 configuration
addresses the critical issue of inferior signal quality that has
traditionally limited ear-EEG’s use in continuous brain
monitoring for conditions such as schizophrenia [11],
cognitive decline [9-11, 16, 17], and sleep disorders [16-18].
Nonetheless, further refinement is required to match the
robustness of more spatially optimal established clinical
configurations, such as T7-Oz and TS8-Oz, alongside
improvements in artifact handling, device design, and remote
testing to ensure reliable practical deployment.

V. CONCLUSION

This study presents the first characterization of ear-EEG’s
periodic and aperiodic components using FOOOF, addressing
a critical gap in mobile brain monitoring. By minimizing
discrepancies in periodic power between both modalities and
confirming the spatial invariance of aperiodic activity,



FOOOF enhanced comparability between ear- and scalp-
EEG. Notably, FOOOF-adjusted ear-EEG achieved signal
quality comparable to a scalp montage, despite limitations.
These findings pave the way for validating ear-EEG as a user-
friendly alternative for continuous neurological health
monitoring, with potential applications extending beyond
clinical diagnostics and treatment to general health and
wellness tracking. As algorithmic and ergonomic advances
progress, FOOOF-adjusted ear-EEG is well-positioned to
become a practical and scalable technology for real-world
ambulatory health assessment.
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