
  

  

Abstract— Ear-electroencephalography (ear-EEG) is a 

discreet, wearable EEG alternative suitable for ambulatory and 

long-term monitoring, especially with rising demand for smart 

wearables and increasing neurological disorders. Its wider 

adoption has been limited by reduced signal quality. The Fitting 

Oscillations and One-Over-f (FOOOF) algorithm, used in scalp-

EEG to separate periodic brain rhythms from the non-

oscillatory aperiodic component, may improve interpretability. 

This study presents the first application of FOOOF to ear-EEG, 

assessing its ability to produce reliable, scalp-equivalent neural 

metrics. Synchronous scalp and ear-EEG were recorded during 

resting state and alpha block paradigms. A calibrated FOOOF 

pipeline extracted periodic and aperiodic activity. Results 

showed that FOOOF improved comparability between 

modalities, particularly between ear and inter-hemispheric scalp 

configurations. Periodic metrics showed strong agreement, with 

correlations up to 0.90 between FOOOF-adjusted peak alpha 

power in ear- and scalp-EEG. The aperiodic exponent showed 

no significant differences between them. These findings indicate 

that single-channel ear-EEG, when processed with FOOOF, can 

deliver accurate neural metrics comparable to scalp-EEG. This 

positions ear-EEG as a promising tool for outpatient neuro-

monitoring, with potential applications in epilepsy, cognitive 

decline, and sleep disorder assessment. 

 
Clinical Relevance— FOOOF-adjusted ear-EEG could 

enhance ambulatory, non-intrusive wearable technology, with 

applications in neurodegenerative disease diagnosis, monitoring, 

and wellness. 

I. INTRODUCTION 

Conventional scalp-electroencephalography (EEG) offers 
high temporal resolution but remains bulky and impractical 
for continuous, real-world health monitoring [1, 2]. Ear-EEG 
– using electrodes placed in or around the ear – is a promising 
wearable alternative but suffers from weakened signals, 
including lower amplitudes and signal-to-noise ratios (SNR) 
[3-5]. Nevertheless, dry electrode ear-EEG systems, such as 
the IDUN earbuds, can capture neurologically relevant 
oscillations like alpha rhythms during the resting state (RS) 
and alpha block [6]. More generally, Looney et al. 
demonstrated that ear-EEG can reliably detect significant 
alpha desynchronizations, such as the expected reduction in 
alpha power following eye opening, despite its inherently 
weaker signal characteristics [1]. 

Recent EEG signal analysis has emphasized the 
importance of distinguishing between periodic and aperiodic 
components of the power spectral density (PSD), the latter 
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exhibiting 1/f-like behavior [7, 8]. Periodic activity reflects 
synchronized neural oscillations linked to cognitive and 
behavioral states, whereas aperiodic features provide insight 
into background neural activity, cortical excitability, and 
neurodevelopmental conditions. The Fitting Oscillations and 
One-Over-f (FOOOF) algorithm models these components 
separately, improving both interpretability and diagnostic 
utility [7]. 

Traditional EEG analysis often conflates periodic 
components, leading to ambiguous results [9]. FOOOF 
iteratively models the EEG PSD by fitting Gaussian functions 
to oscillatory peaks while simultaneously modeling the 
aperiodic activity using power-law fitting. This effectively 
separates these components to extract metrics such as peak 
frequencies, bandwidth, and power, alongside aperiodic 
parameters (exponent and offset). While most decomposition 
techniques isolate oscillatory activity, only FOOOF explicitly 
models the aperiodic background, yielding more reliable, 
specific, and interpretable neural markers. As demonstrated 
across the literature [7-12], FOOOF-derived features have 
been successfully applied in a range of clinical contexts. 
These include outpatient applications such as anesthesia depth 
monitoring via more accurate delta wave tracking and 
cognitive fatigue assessment [8], as well as neurological 
disorders like age-related neural decline [8-10], schizophrenia 
[11], and epilepsy [12]. Together, these applications have 
demonstrated distinct improvements over conventional 
approaches in enhancing patient outcomes. However, 
FOOOF has yet to be applied to ear-EEG, limiting its use in 
wearable, ambulatory monitoring contexts. 

Given the inherent limitations of ear-EEG and the 
challenges in realizing FOOOF’s potential, this study 
explores their synergy by presenting the first systematic 
application of FOOOF to single-channel ear-EEG. The study 
validates its compatibility, comparing FOOOF-derived 
metrics between the ear and scalp, and evaluating signal 
quality to identify scalp configurations most correlated with 
ear-EEG. This work lays the groundwork for a viable solution 
for continuous brain monitoring beyond laboratory settings. 

II. METHODS 

A. Participants 

Sixteen healthy adults (mean age = 22.5 ± 2.2 years; 5 
males, 11 females) participated, with eight datasets obtained 
from a previous ear-EEG validation study using an identical 
methodology to ensure consistency [13]. Participants without 
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neurological disorders or implants were selected to minimize 
confounding factors [13]. Both sexes were included based on 
recruitment availability. Ethical approval was granted by the 
Trinity College Dublin Research Ethics Committee (Ref: 
3831), and participants provided informed consent.  

B. Data Collection 

Brain activity was recorded synchronously using ear- and 
scalp-EEG. For ear-EEG, single-channel IDUN Guardian 
Earbuds (IDUN Technologies AG) were utilized, with the 
right ear referenced to the left ear electrode. Participants 
inserted the sanitized earbuds, which were then adjusted for fit 

and to maintain impedance below 300 k. Wireless data 
streaming was performed at 250 Hz using Python SDK. A 24-
channel scalp-EEG cap (Easycap GmbH, Germany) was used 
as the reference for characterization. Cap sizes were adjusted 
for individual anatomy, with impedance maintained below 20 

k using conductive gel. mBrainTrain Mobi amplifier 
(mBrainTrain LLC, Belgrade) was used to collect data at 250 
Hz, with wireless transmission via a BlueSoleil v10 USB 
dongle. Paradigms were implemented using the validated 
EaR-P Lab application, with temporal synchronization 
ensured via LabStreaming Layer (LSL, Swartz Centre for 
Computational Neuroscience, UC San Diego, USA) across the 
Python SDK, mBrainTrain, and EaR-P Lab data streams [14]. 
All applications were run on a Dell laptop positioned 60 cm 
from participants at eye level, with auditory stimuli delivered 
using HD 280 Pro headphones (Sennheiser, Germany) at 10% 
volume in a non-shielded behavioral testing room.  

EEG paradigms consisted of a five-minute resting state 
(RS) recording and a four-minute Alpha Block task with one-
minute alternating eyes open (EO) and eyes closed (EC). Data 
recordings proceeded without issues, allowing all datasets to 
be retained for analyses. However, the raw RS EEG file for 
Participant 3 and the Alpha Block EEG file for Participant 8 
from the previous study were unreadable, likely due to file 
corruption, and were excluded.  

C. Pre-Processing and FOOOF Application 

Raw EEG data from the RS and Alpha Block paradigms 
were pre-processed using custom MATLAB scripts 
(MATLAB R2024b, The MathWorks Inc., Natick, MA, 
USA). All scripts are publicly available on GitHub 
(https://github.com/rakotc/Parameterization-of-Ear-EEG). 
The Alpha Block data was separated into EC and EO segments 
using synchronized markers, resulting in three conditions 
overall: RS, EC, and EO. Both modalities’ signals were band-
pass filtered (1 to 100 Hz) to remove artifacts and drifts, with 
a 50 Hz notch filter applied to reduce powerline noise. 
Independent Component Analysis (ICA) was not used due to 
the single-channel nature of ear-EEG and to ensure unbiased 
comparison across modalities. Scalp-EEG was referenced into 
three configurations (T7-Oz, T8-Oz, T7-T8). PSDs were 
calculated using Welch’s method with 2 s windows and 50% 
overlap.  

FOOOF parameters were tuned on a subset of data from 
different subjects across RS, EC, and EO conditions using the 
T7-Oz and T8-Oz configurations. An iterative MATLAB 
script optimized parameters based on goodness-of-fit metrics 
to avoid under- and overfitting. The final parameters 
(maximum peaks = 11, minimum peak height = 0.05, peak 

threshold ratio = 1.5 and peak width limits = [1.1, 7] Hz) 
achieved a strong quality fit (mean R² = 0.97), and the 
parameters generalized well to other configurations, including 
ear-EEG where the highest fit correlation was obtained (R² = 
0.985, Fig. 1 (A) and (B)). 

FOOOF was applied to data in the 2 to 100 Hz range, and 
fixed or knee aperiodic models were selected based on the 
best quantitative fit quality. The algorithm extracted periodic 
parameters (peak power, frequency, bandwidth) and aperiodic 
parameters (exponent, offset), along with fit metrics. The 
alpha band (8 to 12 Hz) peak power and SNR in decibels, 
calculated via equation (1), were used to analyze oscillatory 
activity for all conditions and configurations. Similarly, the 
aperiodic exponent was used to characterize background 
neural activity. 

𝑆𝑁𝑅 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑙𝑝ℎ𝑎 𝑃𝑜𝑤𝑒𝑟𝐸𝐶 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑙𝑝ℎ𝑎 𝑃𝑜𝑤𝑒𝑟𝐸𝑂                 (1) 

D. Statistical Analyses 

The statistical analyses addressed the study's three primary 
aims and were carried out using custom MATLAB scripts and 

Prism 10 (GraphPad Software, Boston, USA). Outliers were 
identified using a ROUT test (Q = 1%), and normality was 
assessed using the Shapiro-Wilk test. G*Power was used to 
examine non-significant results for statistical power further. 

Fig. 1. Decomposition of EC average PSD into periodic and aperiodic fits 
using FOOOF, for different configurations: (A) Ear, and (B) T7-Oz (n = 15). 

 



  

 To validate the cohort datasets, inter-gender comparisons 
of pre-and post-FOOOF peak alpha power and SNR, as well 
as aperiodic exponent, were conducted across all conditions 
and configurations using unpaired t-tests or Wilcoxon rank-
sum tests, depending on data distribution. Validation of 
FOOOF’s performance involved comparing pre- and post-
FOOOF peak alpha power and SNR values within each 
configuration (Ear, T7-Oz, T8-Oz, T7-T8) across the RS, EC, 
and EO conditions, using paired t-tests or Wilcoxon signed-
rank tests.  

Inter-configuration comparisons were made to evaluate 
ear-EEG relative to scalp-EEG by comparing peak alpha 
power, SNR, and aperiodic exponent values across conditions, 
again using the appropriate statistical tests. Correlations 
between ear and scalp configurations were assessed using 
Spearman correlation, utilized for its robustness to non-normal 
data distributions. To assess hemispheric balance and the 
representativeness of inter-hemispheric configurations, 
comparisons were made between T7-Oz and T8-Oz for peak 
alpha power, SNR, and aperiodic exponent. Following this, a 
gold-standard average of the T7-Oz and T8-Oz metrics was 
computed and compared to the T7-T8 and ear-EEG 
configurations to evaluate their signal quality. All analyses 
followed consistent procedures to ensure comparability and 
reliability across metrics and conditions. 

III. RESULTS 

A.  Validation of FOOOF for Ear-EEG 

Given the absence of significant differences in periodic and 
aperiodic activities between genders (p > 0.05), the full dataset 
was utilized for characterization. Post-hoc power calculations 
indicated values above 0.85 for all comparisons, confirming 
sufficient sensitivity to detect effects within the cohort. 
Subsequently, scalp configurations consistently exhibited 
reductions in peak alpha power across all conditions. For 
example, T7-Oz demonstrated a 24% decrease in RS and a 
significant reduction in EC (p < 0.001). In contrast, ear-EEG 
showed a consistent but nonsignificant increase in peak alpha 
power, including a 1.42-fold rise in RS and up to a 2.79-fold 
in the EO condition. 

Nonetheless, all configurations demonstrated a reduction 
in the SNR post-FOOOF, with this drop being significant for 
all scalp configurations (p < 0.01), but not for ear-EEG (p > 
0.05). 

B. Inter-Configuration Comparisons 

As illustrated in Fig. 2 (A) – (F), FOOOF adjustment 
reduced the magnitude of differences in peak alpha power 
between modalities across all conditions. Importantly, the 
largest reduction was 59% in the EO condition between the ear 
and T7-Oz. For EC, the ear’s peak alpha power remained 
significantly lower than hemispheric scalp configurations (p < 
0.05), but not compared to T7-T8 (p > 0.05). In contrast, as 
shown in Fig. 2 (A) and (B), discrepancies in RS between the 

Fig. 2. Comparison of ear-EEG and scalp-EEG configurations before and after FOOOF adjustment across various conditions. (A) Peak alpha power in RS 

- Pre-FOOOF, (B) FOOOF-adjusted periodic fit; (C) Peak alpha power in EO - Pre-FOOOF, (D) FOOOF-adjusted periodic fit; (E) Peak alpha power in 
EC - Pre-FOOOF, (F) FOOOF-adjusted periodic fit; and (G) Comparison of RS aperiodic exponents. Statistical significance was assessed using paired t-

tests. Values are presented as mean ± SD (n = 15). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 



  

ear and T7-T8 reduced from highly significant (p < 0.0001) to 
nonsignificant (p > 0.05) post-FOOOF. 

Correlation analyses summarized in Table 1 confirmed that 
T7–T8 exhibited the strongest positive correlation with ear-
EEG in peak alpha power, with a post-FOOOF coefficient of 
0.90 during EO. Regarding the aperiodic exponent, no 
consistent configuration correlated best with the ear. Although 
the ear showed the lowest exponent in the RS condition (1.56 
± 0.36), no significant differences were observed between the 
ear and scalp configurations across any condition (p > 0.05). 
Generally, Fig. 2 (G) illustrates the RS results as representative 
of this broader pattern across all conditions. Moreover, post-
hoc power calculations exceeded 0.92 for all conditions, 
supporting the adequacy of detecting these effects using this 
sample size. 

Further analysis of Table 1 revealed that, while the ear 
originally exhibited comparable correlations with T7-Oz and 
T8-Oz, some deviations emerged in the RS condition 
following FOOOF adjustment, in both peak alpha power and 
aperiodic exponents. In line with this variability, eye closure 
demonstrated improved correlations post-FOOOF, whereas no 
clear pattern was observed for the RS and EO conditions.  

C. Quality Evaluation Against Hemispheric Gold Standard 

To establish a gold standard, parameters from T7-Oz and 
T8-Oz were compared. No significant differences in FOOOF-
adjusted peak alpha power, SNR, or aperiodic exponent were 
found between the two hemispheric configurations across all 
conditions. Therefore, their average was used as the reference 
standard for evaluating the quality of the ear and T7-T8 inter-
hemispheric configurations.  

Post-FOOOF, both configurations exhibited varying 
reductions in statistical significance relative to the reference. 
For instance, in some conditions (e.g., RS), the T7-T8 
configuration became nonsignificant, while in others (e.g., EC, 

TABLE 1. CORRELATION BETWEEN EAR AND SCALP CONFIGURATIONS 

ACROSS CONDITIONS. COLOR SCALE RANGES FROM NEGATIVE CORRELATION 

(RED) TO POSITIVE CORRELATION (GREEN). 

Fig. 3 (A)), significant differences remained (ear: p < 0.01, T7-
T8: p < 0.0001). Similarly, no consistent SNR trend emerged 
across conditions, but ear-EEG remained more comparable to 
the gold reference post-FOOOF, as seen in Fig. 3 (B) (p < 
0.01). A statistical power calculation exceeding 0.90 further 
supported the reliability of these findings. 

IV. DISCUSSION 

Dataset validation confirmed the absence of significant 
gender-based differences in periodic and aperiodic 
components within the narrow, healthy demographic and 
aligned with known trends in alpha power, thus supporting the 
robustness of the cohort [9, 15]. Applying FOOOF to scalp-
EEG performed as expected, reducing periodic activity due to 
the removal of 1/f aperiodic noise. In contrast, ear-EEG 
showed nonsignificant increases in peak alpha power post-
FOOOF. This may be due to the absence of artifact rejection, 
which can leave residual non-neural noise, such as muscle and 
motion artifacts, unaddressed. In noisy modalities like ear-
EEG, narrowband transient artifacts may not be captured by 
the aperiodic fit, causing them to be misclassified as periodic 
peaks. Consequently, residual noise can inflate peak power 
estimates, diminishing the effectiveness of the FOOOF 
decomposition. Nonetheless, artifact rejection was 
deliberately excluded to avoid bias, particularly because 
standard methods, such as ICA, are incompatible with single-
channel ear-EEG, and alternative techniques lack validation or 
impose a significant computational load [7]. 
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- 0.04 0.30 0.51 
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0.71 0.66 0.74 
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Exponent 

Resting 
State 

0.37 0.00 0.14 

Eyes 
Closed 

- 0.04 - 0.50 - 0.03 

Eyes 
Open 

- 0.30 - 0.64 - 0.11 

Fig. 3. Comparison of ear and scalp inter-hemispheric configurations against 
the average scalp hemispheric gold standard. (A) EC peak alpha power and 

(B) SNR. Values are presented as mean ± SD (n = 15). **p < 0.01, ***p < 

0.001, ****p < 0.0001. 
 



  

Despite a persistent lower absolute peak alpha power, ear-
EEG became more comparable to scalp recordings following 
FOOOF adjustment. The strongest correspondence was 
observed with the inter-hemispheric configuration T7–T8, 
which showed correlation coefficients of up to 0.90 and 
improvements in both EC and EO conditions (Fig. 2 (A) – (F)). 
This reflects the anatomical proximity between the ear and the 
latter, which results in the detection of more comparable 
volume-conducted signals. Thus, while all configurations 
measure the same neural sources, the characteristics of these 
periodic signals are strongly influenced by spatial sampling as 
explored in the literature [2, 9]. Contrarily, aperiodic 
parameters remained consistent across all sites, reinforcing the 
spatial invariance and robustness of the aperiodic exponent – 
even in noisier, single-channel ear-EEG such as those 
analyzed without artifact rejection. This spatial invariance 
arises from the global nature of aperiodic activity, which 
reflects large-scale cortical dynamics and the brain-wide 
balance between excitatory and inhibitory processes; these 
features are less dependent on the signal sources [7, 9, 11]. 

Most importantly, signal quality assessment addressed a 
key gap in the literature. Although FOOOF did not 
consistently improve signal quality in either modality 
compared to the gold reference, both ear-EEG and inter-
hemispheric scalp configurations showed no clear advantage 
over each other, demonstrating similar variability in spectral 
fidelity relative to the reference while maintaining 
comparability between themselves. Separating periodic and 
aperiodic components is particularly crucial for ear-EEG, 
where the inherently lower signal amplitudes and higher 
susceptibility to noise and motion artifacts traditionally make 
it difficult to distinguish genuine neural activity from 
broadband distortions. However, FOOOF’s explicit modeling 
and isolation of both periodic and aperiodic activity in ear-
EEG – unlike conventional decomposition algorithms – 
mitigated these issues, improving interpretability and 
minimizing differences between ear- and scalp-EEG. These 
findings represent a significant advancement toward more 
user-friendly, effective, and personalized treatment of 
neurological disorders – including dementia [9, 10, 16, 17], 
schizophrenia [11], and epilepsy [16, 17] – as well as sleep 
disorders [16-18]. This progress is driven by the reliable 
decomposition of ear-EEG PSDs. While prior studies have 
demonstrated the feasibility of ear-EEG-based monitoring for 
these conditions, challenges with signal quality compared to 
scalp-EEG have limited diagnostic accuracy – a limitation that 
this novel combined approach can effectively overcome. 

Nonetheless, these findings should be interpreted in light 
of the inter-subject variability observed in ear-EEG, likely 
stemming from anatomical differences and the inevitable 
constraints of generic-fitting earbuds [3, 6]. This variability 
contributed to a larger SNR variation reflected by a greater 
standard deviation, highlighting the need for artifact rejection 
and improved device ergonomics to ensure reliable real-world 
use. It may also account for the lower correlations observed 
post-FOOOF in Table 1, despite the absence of significant 
differences in the corresponding measures (Fig. 2 (G)). 
Furthermore, the restricted demographic may have limited 
neural variability, as gender- and age-related EEG differences 
typically emerge later in life due to cumulative neurostructural 
and hormonal changes [9]. Thus, while post-hoc power 

analyses and effect sizes indicated sufficient sensitivity, the 
statistical generalizability of these findings must be validated 
in future studies employing larger and more diverse cohorts. 
Given the projected use of FOOOF-adjusted ear-EEG for 
outpatient and long-term monitoring in real-world settings, 
addressing these limitations is critical to ensure reliable and 
robust performance across various populations and conditions. 

While this study establishes the foundational 
comparability of ear-EEG to gold standard configurations, its 
practical deployment for mobile brain monitoring demands 
further investigation. This begins with the identification of 
compatible artifact rejection methods; Noise-Assisted 
Multivariate Empirical Mode Decomposition has been 
proposed, but its validity and computational feasibility remain 
underexplored [19]. Alternatively, the FOOOF algorithm itself 
could be adapted to better handle the distinct noise 
characteristics of ear-EEG. For instance, condition-specific 
frequency fitting windows could exclude artifact-dominant 
bands, and penalty-informed fitting – which suppresses 
abnormally located peaks and steep slopes using 
regularization, could improve robustness. These modifications 
may address the non-oscillatory-like behavior observed within 
the FOOOF-adjusted periodic fit beyond 15 Hz (Fig. 1), as 
well as the inconsistent correlation patterns between ear and 
scalp configurations across conditions (Table 1), both of which 
likely reflect the residual artifacts in the current FOOOF-
adjusted fits. 

Beyond these algorithmic improvements, FOOOF-
adjusted ear-EEG must be validated under ecologically valid 
conditions involving longer durations and participant 
movement to evaluate its performance in realistic settings. 
Moreover, while FOOOF-adjusted ear-EEG shows promise 
for ambulatory monitoring, its current implementation – 
requiring the complete signal – restricts its use in live 
applications. Considering the surge in wearable technologies, 
future work should explore whether FOOOF can be 
implemented in real-time, such as through an overlapping-
window PSD estimation and gradual update of parameters.  
This development would extend this technology’s utility 
beyond neurological diagnostics to broader applications in 
health and wellness, leveraging EEG’s ability to capture 
systemic physiological states [9].  

Taken together, the statistical equivalence between ear-
EEG and the clinically accepted T7–T8 configuration 
addresses the critical issue of inferior signal quality that has 
traditionally limited ear-EEG’s use in continuous brain 
monitoring for conditions such as schizophrenia [11], 
cognitive decline [9-11, 16, 17], and sleep disorders [16-18]. 
Nonetheless, further refinement is required to match the 
robustness of more spatially optimal established clinical 
configurations, such as T7-Oz and T8-Oz, alongside 
improvements in artifact handling, device design, and remote 
testing to ensure reliable practical deployment. 

V. CONCLUSION 

This study presents the first characterization of ear-EEG’s 
periodic and aperiodic components using FOOOF, addressing 
a critical gap in mobile brain monitoring. By minimizing 
discrepancies in periodic power between both modalities and 
confirming the spatial invariance of aperiodic activity, 



  

FOOOF enhanced comparability between ear- and scalp-
EEG. Notably, FOOOF-adjusted ear-EEG achieved signal 
quality comparable to a scalp montage, despite limitations. 
These findings pave the way for validating ear-EEG as a user-
friendly alternative for continuous neurological health 
monitoring, with potential applications extending beyond 
clinical diagnostics and treatment to general health and 
wellness tracking. As algorithmic and ergonomic advances 
progress, FOOOF-adjusted ear-EEG is well-positioned to 
become a practical and scalable technology for real-world 
ambulatory health assessment.  

REFERENCES 

[1] D. Looney et al., “The In-the-Ear Recording Concept: User-Centered 

and Wearable Brain Monitoring,” IEEE Pulse, vol. 3, no. 6, pp. 32–42, 
2012. 

[2] N. Kaongoen et al., “The future of wearable EEG: A review of ear-EEG 

technology and its applications,” Journal of Neural Engineering, vol. 

20, no. 5, 2023. 

[3] J. Pazuelo et al., “Evaluating the Electroencephalographic Signal 

Quality of an In-Ear Wearable Device,” Sensors, vol. 24, no. 12, p. 

3973, 2024. 

[4] K. B. Mikkelsen et al., “EEG recorded from the ear: characterizing the 

ear-EEG method,” Frontiers in Neuroscience, vol. 9, p. 438, 2015. 

[5] P. Kidmose et al., “Ear-EEG from generic earpieces: a feasibility 

study,” in Proc. 35th Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society (EMBC), 2013, pp. 543–
546. 

[6] IDUN Technologies AG, “Validation of in-ear EEG for Sleep and 

Hearing Use Cases,” IDUN Technologies AG, 2023.  

[7] T. Donoghue et al., “Parameterizing neural power spectra into periodic 

and aperiodic components,” Nature Neuroscience, vol. 23, no. 12, pp. 
1655–1665, 2020. 

[8] N. Brake et al., “A neurophysiological basis for aperiodic EEG and the 

background spectral trend,” Nature Communications, vol. 15, no. 1, p. 

1514, 2024. 

[9] G. Ouyang et al., “Decomposing alpha and 1/f brain activities reveals 

their differential associations with cognitive processing speed,” 

NeuroImage, vol. 205, p. 116304, 2020.  

[10] A. M. Van Nifterick et al., “Resting-state oscillations reveal disturbed 

excitation–inhibition ratio in Alzheimer’s disease patients,” Scientific 
Reports, vol. 13, no. 1, p. 7419, 2023. 

[11] E. J. Peterson et al., “Aperiodic Neural Activity is a Better Predictor of 

Schizophrenia than Neural Oscillations,” Clinical EEG and 
Neuroscience, vol. 54, no. 4, pp. 434–445, 2023. 

[12] N. Wagh et al., “Population-based spectral characteristics of normal 

interictal scalp EEG inform diagnosis and treatment planning in focal 

epilepsy,” Scientific Reports, vol. 15, no. 1, p. 25147, 2025.  

[13] J. K. Bradshaw Bernacchi and A. López Valdés, “Electrophysiological 

Characterisation of Commercial Ear-EEG Devices,” in Proc. 47th 

Annual International Conference of the IEEE Engineering in Medicine 
and Biology Society (EMBC), 2025. 

[14] G. Correia, M. J. Crosse, and A. López Valdés, “Brain wearables: 

validation toolkit for ear-level EEG sensors,” Sensors, vol. 24, no. 4, p. 
1226, 2024. 

[15] J.-H. Kang, J.-H. Bae, and Y.-J. Jeon, “Age-related characteristics of 

resting-state electroencephalographic signals and the corresponding 

analytic approaches: a review,” Bioengineering, vol. 11, no. 5, p. 418, 

2024. 

[16] A. S. Mihai et al., “The Next Frontier in Brain Monitoring: A 

Comprehensive Look at In-Ear EEG Electrodes and Their 
Applications,” Sensors, vol. 25, no. 11, p. 3321, 2025. 

[17] J. Y. Juez et al., “Ear-EEG devices for the assessment of brain activity: 

a review,” IEEE Sensors, vol. 24, no. 20, pp. 31606–31623, 2024. 

[18] T. Nakamura et al., “Hearables: Automatic overnight sleep monitoring 

with standardized in-ear EEG sensor,” IEEE Transactions on 
Biomedical Engineering, vol. 67, no. 1, pp. 203–212, 2019. 

[19] Y. Liu et al., “Remove motion artifacts from scalp single channel EEG 

based on noise assisted least square multivariate empirical mode 

decomposition,” in Proc. 13th International Congress on Image and 
Signal Processing, BioMedical Engineering and Informatics (CISP-

BMEI), BioMedical Eng. Informatics (CISP-BMEI), 2020. 


