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Abstract 

Study Objectives:  Polysomnography (PSG) currently serves as the benchmark for evaluating sleep disorders. Its discomfort makes 
long-term monitoring unfeasible, leading to bias in sleep quality assessment. Hence, less invasive, cost-effective, and portable alter-
natives need to be explored. One promising contender is the in-ear-electroencephalography (EEG) sensor. This study aims to establish 
a methodology to assess the similarity between the single-channel in-ear-EEG and standard PSG derivations.

Methods:  The study involves 4-hour signals recorded from 10 healthy subjects aged 18–60 years. Recordings are analyzed following 
two complementary approaches: (1) a hypnogram-based analysis aimed at assessing the agreement between PSG and in-ear-EEG-
derived hypnograms; and (2) a feature- and analysis-based on time- and frequency-domain feature extraction, unsupervised feature 
selection, and definition of Feature-based Similarity Index via Jensen–Shannon Divergence (JSD-FSI).

Results:  We find large variability between PSG and in-ear-EEG hypnograms scored by the same sleep expert according to Cohen’s 
kappa metric, with significantly greater agreements for PSG scorers than for in-ear-EEG scorers (p < .001) based on Fleiss’ kappa 
metric. On average, we demonstrate a high similarity between PSG and in-ear-EEG signals in terms of JSD-FSI—0.79 ± 0.06—awake, 
0.77 ± 0.07—nonrapid eye movement, and 0.67 ± 0.10—rapid eye movement—and in line with the similarity values computed inde-
pendently on standard PSG channel combinations.

Conclusions:  In-ear-EEG is a valuable solution for home-based sleep monitoring; however, further studies with a larger and more 
heterogeneous dataset are needed.

Key words: sleep wearables; in-ear-EEG; machine learning; sleep staging; multisource-scored sleep databases

Statement of Significance

Traditional polysomnography (PSG) may prevent from depicting real sleep patterns due to the extensive setting employed. An alter-
native to overcome this limitation is to use wearable solutions like in-ear-electroencephalography (EEG). To date, the in-ear-EEG 
and the standard PSG derivations have only been compared following basic correlation analysis. We propose a more exhaustive 
methodology—hypnogram- and feature-based—to evaluate the similarity between the in-ear-EEG and PSG signals. The ultimate 
goal is to investigate whether in-ear-EEG sensors inherit information close to the ones we extract through standard PSG.
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Introduction
Sleep is essential to good health [1]. Poor or inadequate sleep is 
associated with several dysfunctions in most physiological sys-
tems [2]. Sleep analysis is of crucial importance in the diagnosis 
and treatment of sleep disorders [1, 2].

Polysomnography (PSG) is the gold standard to perform sleep 
studies [1–3]. PSG is performed in appropriate clinical facilities 
and involves recording multiple bio-signals during a full night’s 
sleep, including brain activity (electroencephalography [EEG]), eye 
movements (electrooculography [EOG]), muscle activity (electro-
myography [EMG]), cardiac activity (electrocardiography [ECG]), 
body position, breathing effort, blood saturation, etc. [1, 2]. The 
PSG recordings are nowadays manually evaluated by trained per-
sonnel according to the American Academy of Sleep Medicine 
(AASM) manual [4]. Despite being highly standardized by AASM 
guidelines, this manual procedure is time- and effort-consuming, 
and it is not error-free [5]. These limitations, along with the sat-
uration of the sleep units, lead to high costs related to patient 
management and care. Besides, due to the invasive equipment, 
and since the patients typically sleep in an atypical and unfamil-
iar environment, standard PSG-based analyses introduce biases 
to the sleep quality assessment [1, 2].

Wearable and portable devices may be valid solutions, as they 
allow for home-based sleep monitoring. The use of unconven-
tional channels has been widely explored in the field of mobile 
sleep monitoring with wearable devices. A comprehensive over-
view of sensing technologies (different signals and their combina-
tions) for sleep staging via wearable devices is provided in [6]. The 
signals conveying a substantial amount of information for this 
task are EEG, EOG, and EMG—with the EEG signal being the most 
used sensing modality as a single data source. We might there-
fore speculate that ear-EEG may be the right choice. The brain 
activity is recorded from electrodes placed in or around the ear, 
while also leading to several advantages in comfort, fixed elec-
trode positions, robustness to electromagnetic interference, and 
ease of use [1, 7].

To date, only two research groups [2, 8–13] have exploited 
ear-EEG signals for sleep analysis. The majority of their studies 
mainly relied on feature-based methodologies to evaluate the 
feasibility of ear-EEG technology for automated sleep monitor-
ing. They showed that automatic sleep scoring based on ear-EEG 
signals was performing at levels comparable to expert scoring of 
PSG, in young healthy subjects [2, 8–13].

Jørgensen et al. [14] study can be seen as a proof of concept for 
the suitability of ear-EEG on epileptic subjects and in [15], Kjaer 
et al. showed that sleep metrics computed from multiple nights 
automatically scored on ear-EEG are more reliable than the ones 
computed from a single night manually scored via standard PSG. 
Thus, highlighting how ear-EEG seems to be a useful alternative 
for sleep staging for the single night recording and an advanta-
geous choice for several nights of sleep monitoring.

However, in none of the above-mentioned studies—even before 
inferring and/or validating sleep metrics and/or algorithms on 
these promising signals—the similarity between each standard 
PSG and the ear-EEG derivations has been thoroughly investi-
gated or quantified.

In this work, we carried out the above-mentioned com-
parison analysis, first focusing on the sleep scoring procedure 
(hypnogram-based), and then directly evaluating the signals  
(feature-based). In the Methods section, we briefly describe the 
dataset along with the instrumentation, data collection pro-
cedure, and preprocessing of the signals. In the Comparison 

analysis: hypnogram-based approach subsection, we first describe 
how to define the consensus in a multisource-scored dataset. 
The hypnogram-based comparison analysis is performed by 
evaluating the intra- and interscorer variability, thus assessing 
the agreement (i.e. Cohen’s kappa and Fleiss’ kappa) between 
the PSG and in-ear-EEG-derived hypnograms. In the Comparison 
analysis: feature-based approach subsection, we present all the 
steps of our feature-based comparison analysis, that is, time- 
and frequency-domain feature extraction, feature selection, 
and the final evaluation of the similarity between the two dif-
ferent sources. The proposed approach relies on a comparison 
of the distributions of the selected features—extracted from 
the two different sources, PSG and in-ear-EEG, respectively—
via the newly introduced Jensen–Shannon Divergence Feature-
based Similarity Index (JSD-FSI). In-ear-EEG earbuds, sensors are 
thought to perform better—for sleep-scoring tasks—when com-
bined with additional EOG signals [3, 10, 16]–especially in distin-
guishing the rapid eye movement (REM) sleep stage. Therefore, 
we extract features from both EOG and scalp-EEG derivations 
(i.e. frontal, central, and occipital brain regions), and we com-
pare them to the features extracted from the in-ear-EEG record-
ings. Among the scalp-EEG derivations, we also included the 
mastoid-to-mastoid one (M1-M2), as its information has been 
proven to be similar to the in-ear-EEG [7, 11].

In the Results section, we present the most significant outcomes 
of our hypnogram- and feature-based approaches, validating any 
related observations through appropriate statistical analyses. 
Finally, in the Conclusions section, we discuss the main key points 
and implications of our findings, highlighting the contributions of 
the current study as well as the limitations encountered.

To summarize, in this work, we investigate whether or not 
in-ear-EEG sensors inherit information—or set of features—close 
to what we usually extrapolate through standard PSG derivations. 
The primary research questions are the following:

1.	 How similar are hypnograms derived from PSG versus 
in-ear EEG signals, specifically in terms of their scoring 
procedures?

2.	 How similar are the PSG and in-ear EEG signals across dif-
ferent sleep stages?

3.	 Does the similarity vary among different sleep stages?
4.	 Can in-ear EEG sensors provide information comparable to 

that obtained from a standard PSG setup?

Methods
We exploit an already existing dataset collected during an 
observational study carried out at IDUN Technologies. In the 
hypnogram-based comparison analysis, we first describe how to 
compute the consensus in the multisource-scored dataset (i.e. a 
dataset where each recording is scored by multiple experts and look-
ing at different sources of signals), and then we assess the intra- and 
interscorer variability. Establishing a consensus is crucial to better 
conduct the feature-based comparison analysis—that is, analyzing 
only the sleep epochs where the PSG-scorers and the in-ear-EEG-
scorers were in agreement on the associated sleep period.

Indeed, in our feature-based comparison procedure, we evalu-
ate the similarity between the signals coming from two different 
sources for each sleep stage independently. The feature-based 
analysis is divided into three steps: feature extraction (time- and 
frequency-domain features), feature selection, and calculation of 
the newly defined JSD-FSI.
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Dataset
The quality assurance study (BASEC Nr. Req-2022-00105) involves 
10 healthy subjects, including both females and males (18–60 
years) selected according to the Pittsburgh Sleep Quality Index 
[17]. Following a screening period of 28 days, the subjects expe-
rience one overnight stay at the investigational site. Participants 
are monitored using multiple standard surface electrodes on 
their scalp (EEG), outer canthus of each eye (EOG), mentalis (chin), 
torso (EKG) in the conventional PSG monitoring, and an additional 
in-ear-EEG sensing technology monitoring. Participants arrive ~3 
hours prior to their normal bedtime at the sleep laboratory, and 
they are instructed about the overall study, including PSG prepa-
ration/setting phase, a sleep restriction phase ≈4 hours, and the 
sleep phase ≈4 hours (Figure 1).

The subjects are asked to avoid caffeine intake from noon before 
arriving at the study center. They perform specific head and eye 
movements for biocalibrating the instrumentation used for data 
collection. Ear tips of three different sizes are given to participants 
to provide proper fit and electrical contact. A 10-minute stabiliza-
tion period is awaited before starting data collection to ensure the 
in-ear electrodes reach thermal equilibrium with the participant’s 
body temperature. For each participant, an impedance measure-
ment of the in-ear-EEG signal is performed at 31.2 Hz to guarantee 
that the system is stable. A 300 kΩ threshold is set for good signal 
quality—greater values indicate either electrical malfunctions or 
incorrect placement of the ear tips in the ear.

The sleep restriction starts at the in-bed time of each subject 
and lasts for about 4 hours, after which participants are allowed 
to sleep for another 4 hours. During the last hour of the sleep 
restriction phase, the subjects abstain from using electronic 
devices. The sleep room is set up according to AASM guidelines 
[4]. The Karolinska Sleepiness Scale [18] is administered at the 
beginning and the end of the sleep restriction period, and prior to 
sleep to assess subjective drowsiness.

PSG and in-ear-EEG signals are recorded simultaneously. The 
data analyzed in this study refer only to the 4 hours recorded 
during sleep.

PSG signals are collected using a SOMNOmedics SOMNOscreen 
plus system with a sampling frequency of 256 Hz (Figure 2A). 
The signals are band-pass filtered between 0.2 and 35 Hz and 
ECG artifacts are removed automatically by the recording device. 
A total of 21 channels are investigated, considering both bipo-
lar and unipolar derivations: two reference electrodes (M1 and 
M2); six EEG bipolar derivations (C3-M2, F3-M2, O1-M2, C4-M1, 
F4-M1, and O2-M1); six EEG unipolar derivations (C3, C4, F3, F4, 
O1, and O2); four EOG bipolar derivations (E1-M1, E1-M2, E2-M1, 
and E2-M2); two EOG unipolar derivations (E1, and E2); the 
mastoid-to-mastoid derivation (M2-M1). From here on, we will 
refer to the set of PSG channels as the set Q.

In-ear-EEG signals are collected via the Guardian 
Development Kit (GDK) device designed by IDUN Technology 
with a sampling frequency of 250 Hz (Figure 2B). The GDK sys-
tem includes hardware (Brain Computer Interface) and stream-
ing software (Neuro-Intelligence Platform). The former involves 
two dry contact electrodes designed by IDUN Technology, that 
is, Dryode Ink electrodes, which are made of an elastomer 
material functionalized by an electrically conductive coating. 
The recording and reference channels are placed in the right 
and left ears, respectively. Biopotential differences between 
electrodes are measured using the ADS1299-x amplifier (Texas 
Instruments, LLC, Dallas, TX).

The in-ear-EEG signals are band-pass filtered between 0.5 and 
35 Hz, before being normalized as their amplitude range would 
match the one of the simultaneously recorded PSG signals. 
In-ear-EEG recordings are multiplied with the standard deviation 
ratio of PSG and in-ear-EEG data. From here on, we will refer to 
the single in-ear-EEG channel as CH1 channel. PSG and in-ear-
EEG signals are manually synchronized based on easily distin-
guishable artifacts in both data streams. They are then trimmed 

Figure 1.  Schematic layout of the quality assurance study and the data collection procedure.
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such that the recordings referring to the same subject share the 
same length.

In Supplementary Figures 1 and 2, for each subject, we report 
an example of a 30-second epoch of raw and preprocessed in-ear-
EEG signal, respectively.

Three scoring experts have independently scored both sig-
nals—first evaluating PSG and then in-ear-EEG data, according to 
AASM guidelines [4]. This results in three PSG hypnograms and 
three in-ear-EEG hypnograms, for each subject. The dataset con-
tains the following annotations W, N1, N2, N3, REM, MOVEMENT, 
and UNKNOWN, where the last two refer, respectively, to move-
ment artifacts and to no sleep stage assigned. In this study, the 
three non-REM (NREM) sleep stages are combined together under 
the label NREM, and all the epochs scored as MOVEMENT or 
UNKNOWN are not considered.

Comparison analysis: hypnogram-based 
approach

Consensus in a multisource-scored dataset. In the hypnogram-
based approach, we first compute the consensus among the three 
scorers on each data source—inspired by previous studies [19, 
20] analyzing multiscored databases. The majority vote from the 
scorers has been computed—that is, we assign to each 30-second 
epoch the most voted sleep stage among the scorers. In the case 
of ties, we compute the soft-agreement metric [20] to then con-
sider the label from the most reliable scorer. The most reliable 
scorer is the one that is frequently in agreement with all the oth-
ers. We then rank the reliability of each scorer, to finally define 
the most reliable scorer, for each subject.

We denote with J the total number of scorers, with j the scorer 
for which the soft-agreement metric is evaluated, and with i all 
the other scorers. The one-hot encoded sleep stages given by the 
scorer j are ŷj ∈ [0, 1]KxT , that is, 1 assigned for the scored stage 
and 0 for the other stages, K is the number of classes, that is, K 
= 3 sleep stages, and T is the total number of epochs. The proba-
bilistic consensus ẑj among the J − 1 scorers (j epochs as follows:

ẑj =
∑J

i=1 ŷi [t]

max
∑J

i=1 ŷi [t]
∀t; i �= j

� (1)

where t is the tth epoch of T epochs and ẑj ∈ [0, 1]KxT, that is, 1 is 
assigned to a stage if it matches the majority or if it is involved 
in a tie. The maximum function in the denominator is used to 
combine the contributions from multiple scorers while ensuring 

that the scale of values remains within the range [0, 1]. The 
Soft− Agreement is then computed separately for each scorer 
across all the T epochs as follows:

Soft− Agreementj =
1
T

T∑
t=0

ẑj
[
yj
]

� (2)
where ̂zj

[
yj
]
 denotes the probabilistic consensus of the sleep stage 

chosen by the scorer j for the tth epoch. Soft-Agreementj ∈ [0, 1], 
where the 0 value is assigned if the scorer j systematically scores 
all the annotations incorrectly compared to the others, while 1 
is assigned if the scorer j is always involved in tie cases or in the 
majority vote. The Soft-Agreement is computed for all the scorers, 
and the values are sorted from the highest—high reliability—to 
the lowest—low reliability.

The Soft-Agreement is computed for each subject, that is, the 
scorers are ranked accordingly, and in case of a tie the top-1 scorer 
will be the one used for that subject. In Supplementary Tables 1 
and 2, we report the Soft-Agreement values computed on each of 
the three scorers, and for each subject, on the PSG and in-ear-EEG 
data sources respectively.

Intra- and interscorer variability are then assessed using 
Cohen’s kappa and Fleiss’ kappa metrics [21], respectively. The 
intrascorer variability refers to the comparison between PSG and 
in-ear-EEG hypnograms scored by the same clinician, while the 
interscorer variability characterizes the agreement among scor-
ers related to the same source, that is, either PSG or in-ear-EEG 
scorers. According to Landis and Koch [14], Cohen’s kappa values 
exceeding 0.80 suggests an almost-perfect agreement between 
scorers; a range of 0.61–0.80 indicates substantial agreement, 
whereas 0.41–0.60 implies moderate agreement. Fair agreement 
falls in the range of 0.21–0.40, and slight agreement occurs 
between 0.00 and 0.20. Fleiss’ kappa values are interpreted in the 
same way [21].

In the feature-based comparison analysis, we define 
similarity-scores between the two different data sources, PSG 
and in-ear-EEG, exploiting a per-sleep-stage-based approach. 
Hence, we first define a common label-ground-truth reference 
for both types of signal—to prevent additional bias in our anal-
ysis. Such a reference is defined by all the epochs scored in the 
same sleep stage by both the consensus, tha tis, PSG and in-ear-
EEG scoring procedures. Therefore, for each subject, starting 
from the PSG and in-ear-EEG hypnograms, we first evaluate the 
consensus among the three expert scorers for the PSG and the 
in-ear-EEG, respectively, and then we consider only the epochs 
where these two consensus are in agreement for our sleep 

Figure 2.  Devices employed in the data collection: (A) SOMNOmedics SOMNOscreen plus system for PSG data with the EXG configuration, that is, 
including six scalp electrodes, EOG, and ECG signal monitoring; (B) GDK hardware including ear tips, earpieces, and brain box used to record in-ear-
EEG data.
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stage-wise feature analysis. In Table 1, we report a summary of 
the total number and percentage of the epochs per sleep stage 
for both PSG and in-ear-EEG-based scoring procedure, and the 
intersection (∩) computed on the labels coming from the two 
different sources.
Comparison analysis: feature-based approach. In order to assess the 
similarity between standard PSG and in-ear-EEG signals, we fol-
low specific steps (as summarized in Figure 3A): (1) we extract 
time- and frequency-domain features from the above-mentioned 
PSG derivations and the in-ear-EEG channel on each 30-second 
sleep epoch; (2) we remove all redundant features through pair-
wise assessments (feature selection procedure) to identify those 
conveying the same information; and (3) we then define the 
JSD-FSI exploited to compare the distributions of the selected 
features, for each sleep stage and for each subject on both PSG 
derivations and the in-ear-EEG.

To fairly validate the results of our comparison analysis, we 
decided to also quantify the similarity between all the possi-
ble combinations of PSG-derived signals, including scalp-EEG 
and EOG channels (Figure 3B). The idea is to assess that the 

PSG-to-In-ear-EEG JSD-FSI similarity scores (histograms in blue 
Figure 3A) are on average close to those we derive from the 
standard PSG-to-PSG comparisons (histograms in red Figure 3B). 
The results are evaluated separately for each sleep stage and for 
each subject.

Feature extraction
We extract both time- and frequency-domain features from 
30-second epochs of signals. All the features depending on the 
amplitude are computed on signals normalized by their maxima, 
compensating for differences in magnitudes.

Time-domain features.
To better compare two different sources of brain activity, we 
evaluate the similarity based on the extraction of several fea-
tures that characterize the EEG signal from multiple perspec-
tives. First, we compute some standard descriptive statistics (i.e. 
standard deviation, interquartile range, skewness, and kurtosis), 
the maximum first derivative, and the number of zero-crossings 

Table 1.  Number and percentage of 30-second epochs per sleep stage (i.e. the result of the consensus reached by the three different 
scorers) for both PSG and in-ear-EEG-based scoring procedure, and the intersection (∩) computed on the labels coming from the two 
different sources

W NREM REM Total

PSG 344
(7.5%)

3469
(75.9%)

755
(16.5%)

4568

In-ear-EEG 277
(6.1%)

3768
(82.5%)

523
(11.4%)

4568

PSG ∩ In-ear-EEG 236
(6.0%)

3308
(84.0%)

392
(10.0%)

3936

Figure 3.  Workflow for evaluating the similarity between the signals recorded from two different channels, including feature extraction and feature 
selection, separately for each sleep stage; and the comparison between feature distributions using the Jensen–Shannon divergence before the 
assessment of the similarity-scores, individually for each sleep stage and for each subject. In detail, (A) refers to the comparison between one in-ear-
EEG and one PSG channel (either scalp-EEG or EOG channels); while (B) illustrates the analysis between two PSG channels (either scalp-EEG or EOG 
channels). An example of similarity-scores distribution for awake, NREM, and REM classes is included for both case studies.
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[22]. These features provide insights regarding the distribution 
of the EEG data and the level of neural activity, that is, depo-
larization rate. To evaluate the regularity and predictability of 
EEG signals in terms of consistency and repetition of patterns 
over time, we then include entropy-based measures, specif-
ically, the approximate entropy [23–25], the sample entropy 
[23–27], the Singular Value Decomposition entropy [26, 27], and 
the permutation entropy [26, 28]. To assess the complexity in 
terms of long-range correlations and self-similarity within the 
EEG signal, we consider the Lempel-Ziv complexity [29] and the 
Detrended Fluctuation Analysis (DFA) exponent [30, 31]. The 
Lempel-Yiv complexity and DFA both rely on the evaluation of 
recurring sub-segments of signal within the time series [29–31]. 
In addition, we also include Hjorth parameters of activity, mobil-
ity, and complexity [32], and the Katz, Higuchi [33], and Petrosian 
[34] fractal dimensions [35, 36] to further quantify the complex-
ity or irregularity of the analyzed time series. In detail, while 
Hjorth parameters offer a quantitative characterization of the 
morphology of the EEG signal by directly focusing on its ampli-
tude fluctuations [31], fractal dimensions provide insights into 
its self-similarity across multiple temporal scales [32–35].

Frequency-domain features.
We first compute the power spectral density (PSD) of each 
30-second signal using Welch’s average periodogram method [37]. 
We choose a Hamming window of 5-second length with a 50% 
overlap, resulting in a frequency resolution of 0.2 Hz [31, 38]. We 
exploited the Hamming window to reduce the estimation variance, 
the side-lobe effect, and the spectral leakage phenomena [39]. The 
5-second window length is set to be at least twice the lowest fre-
quency of interest 0.5 Hz (i.e. the lower end of the EEG delta power 
band) [38]. Then, the median-average partially mitigates the influ-
ence of any noise/artifacts we have on our signals [31, 38].

Once the PSD has been computed, we first extract standard 
frequency-domain features, such as the spectral energy of the 
whole 30-second signal, and the relative spectral power on all 
the EEG frequency bands, that is,. delta (δ, 0.5–4 Hz), theta (θ, 4–8 
Hz), alpha (α, 8–12 Hz), sigma (σ, 12–16 Hz), beta (β, 16–30 Hz), 
and gamma (γ, 30–35 Hz). We then include several ratio measures 
between the different frequency bands, that is, δ/θ, δ/σ, δ/β, θ/α, 
δ/α, α/β, δ/(α + β), θ/(α + β), and δ/(α + β + θ).

In our frequency-domain analysis, we include additional fea-
tures assessing the spread, symmetry, tail behavior, shape, and 
complexity of each 30-second signal’s spectrum distribution. 
Specifically, we compute the four central moments in statistics 
(i.e. mean, variance, skewness, and kurtosis), the spectral entropy 
and the Renyi entropy [40], the spectral centroid [41, 42], the spec-
tral crest factor [43], the spectral flatness [41, 42], the spectral 
roll-off [44], and the spectral spread [42].

In Supplementary Tables 3 and 4, we report the complete list 
of all the time- and frequency-domain features extracted. In the 
Supplementary Analyses section, we also include additional mathe-
matical details for each of the above features.

Feature selection.
The feature selection procedure is essential to remove in our anal-
ysis possible redundancy within the feature subset. We exploit a 
feature selection algorithm based on pairwise feature correlation 
[45, 46], aiming to identify the most representative features among 
all the extracted ones. This algorithm is selected because it outper-
forms other traditional feature selection methods on several real-
life datasets [44]. Additionally, an unsupervised approach is used 

since there are no labels related to the similarity between PSG and 
in-ear-EEG signals. However, before proceeding with this proce-
dure, we should first consider that the above-derived features are 
meant to describe the morphology of our neurological signals. The 
features are all supposed to change based on the state brain sub-
jects are in, that is, waking state, NREM state, or REM state. Thus, 
we decide to first divide the data, that is, the 30-second epochs, 
depending on the sleep stage they are assigned to.

Therefore, for each pair of channels (i.e. a pair is defined as, 
where q ∈ Q , and Q is the above-defined set of PSG channels), we 
build pairs of datasets 

{
Dq, DCH1

}
, one pair for each of the k ∈ K 

sleep stages. Each dataset D ∈ �MxNxK is the result of concate-
nated feature vectors f

n, k, where K = 3 is the number of sleep 
stages, N is the total number of features, with n ∈ N, and M is the 
total number of 30-second epochs in each stage.

A z-score normalization is performed separately on each 
dataset-pair, Dq and DCH1, and for each sleep stage, to reduce 
dissimilarities among the different subjects. On each dataset, 
we perform the feature selection based on the computation of a 
modified version of the maximal information compression index 
between each pair of features [45–47]. As the algorithm adopts a 
k-nearest neighbors approach, the determination of the initial k 
value is crucial and is guided by metrics such as the representa-
tion entropy [45, 46] and the redundancy rate [46, 48].

In Supplementary Analyses section, we report additional math-
ematical details regarding the modified version of the feature 
selection algorithm, along with further details on the k-nearest 
neighbors approach.

Jensen–Shannon Divergence–Feature-Based 
Similarity Index
We quantify the similarity between pairs of feature distribu-
tions, coming from two different sources (e.g. PSG-derived and 
in-ear-EEG-derived), exploiting the JSD [49]. The JSD divergence is 
a symmetric and smoothed version of the Kullback–Leibler (KL) 
divergence [50], quantifying the similarity between two proba-
bility distributions. Practically, we first compute the probability 
density function (PDF) Φ for each pair of feature distributions ®
Φ

Ç
f
−

q

n, k

å
, Φ

Ç
f
−

CH1

n, k

å´
 extracted from the paired datasets 

{
Dq, DCH1

}
 [51]. We then measure the dissimilarities between 

each pair via the JSD divergence. JSD ranges from 0 (identical dis-
tributions) to 1 (completely dissimilar distributions). The higher 
the number, the more dissimilar the probability distributions. 
Hence, once we compute the JSD metric on each PDF feature 

pair 

®
Φ

Ç
f
−

q

n, k

å
, Φ

Ç
f
−

CH1

n, k

å´
, for each sleep stage k and of each 

subject, we can finally compute the JSD-FSI between each PSG q 
channel and the in-ear-EEG CH1 channel as follows:

JSD-FSIk ∈ K =
N∑

n=1

(1− JSDn) / N
� (3)

JSDn

(
Φ
(
f q
n, k

)
||Φ

(
f CH1
n, k

))
=

(
KL

(
Φ
(
f q
n, k

)
||M

)
KL

(
Φ
(
f CH1
n, k

)
||M

))
/2

�  
� (4)

where N is the total number of features, M is the average dis-
tribution defined as M =

(
Φ
(
f q
n, k

)
+Φ( f CH1

n, k

)
/2, while 

KL
(
Φ
(
f q
n, k

)
|| M

)
 is the KL divergence between the two distribu-

tions Φ
(
f q
n, k

)
 and M, defined as
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KL(Φ

Ç
f
−

q

n, k

å
|| M) =

∑
f q
k (t)× log

(
f q
k (t) / M (t)

)
∀t;

� (5)

Hence, for each sleep stage and for each subject, we derive 21 
(i.e. total number of pairs comparisons {q, CH1}) JSD-FSI simi-
larity scores. Each of these scores is defined as the sum of the 
individual JSDn similarity scores—resulting from all the PDF fea-
ture distribution comparisons—divided by the total number of 
features analyzed (Equation 2).

The same comparison analysis has been done between all the 
possible combinations of PSG-derived signals, that is, scalp-EEG-
to-scalp-EEG, scalp-EEG-to-EOG, and EOG-to-EOG comparisons. 
We compare all the PDF feature distributions extracted from all 
the channels in the PSG set Q (unique comparisons, i.e. upper tri-
angle of the symmetric matrix with dimension (|Q| x |Q|), where 
|Q| = 21 is the cardinality of the set, or the total number of PSG 
channels). Hence, we first compute the PDF Φ for each pair of 

feature distributions 

®
Φ

Ç
f
−

qi

n, k

å
, Φ

Ç
f
−

qj

n, k

å´
 extracted from the 

dataset pairs {Dqi , Dqj}, with i �= j. We then compute the JSD-FSI 
similarity-scores on all the possible combinations as described 
above. In that case, for each sleep stage and subject, we derive 
210 (i.e. unique comparisons between all the PSG channels via the 
binomial coefficient |Q|!

2!(|Q|−2)!) JSD-FSI similarity-scores.
We will fairly assess, for each sleep stage and subject, that the 

PSG-to-in-ear-EEG JSD-FSI similarity scores are on average close to 
those derived from the standard PSG-to-PSG comparisons.

Results
The main contributions of our study are the following:

1.	 We found large intrascorer variability related to the in-ear-
EEG scoring compared to the PSG scoring, with agree-
ments among PSG scorers significantly (p < .001) greater 
than the ones among in-ear-EEG scorers. This difference 
is probably due to the uncertainty the scorers have when 
evaluating in-ear-EEG signals.

2.	 We show that the similarity between the PSG and the 
in-ear-EEG signals—in terms of JSD-FSI score—is high, 
on average 0.79 ± 0.06 in awake, 0.77 ± 0.07 in NREM, and 
0.67 ± 0.10 in REM.

3.	 We found significant changes in JSD-FSI scores between 
sleep stages, with significantly greater values for the awake 
stage with respect to NREM (p < .001) and REM (p < .001) 
stages, and significantly greater values for the NREM stage 
compared to REM (p < .001) stage.

4.	 We prove that the JSD-FSI similarity values reported in 
(Equation 2) are revealed to be in line/overlap with the 
similarity values computed independently on the different 
combinations of PSG channels.

Comparison analysis: hypnogram-based 
approach
Intra- and interscorer variability in the multisource-
scored dataset.
We measure the agreement between each pair of PSG and in-ear-
EEG hypnograms referring to the same recording/subject scored 
by the same scorer expert, according to Cohen’s kappa and Fleiss’ 
kappa metrics.

In Figure 4A, we report, for each scorer, the distribution of 
Cohen’s kappa values computed for each recording/subject 

between the PSG and in-ear-EEG hypnograms—so quantifying 
the intrascorer variability in the multisource-scored dataset. In 
this context, the values exhibit considerable dispersion across all 
distributions, with limited agreement levels, particularly in the 
comparison performed on the scorer 2. No significant changes are 
found among the three Cohen’s kappa distributions according to 
the ANOVA test (α = 0.05). The normality assumption is verified 
based on the Shapiro–Wilk test (α = 0.05).

In Figure 4B, we report, for each data source, the distribution of 
the Fleiss’ kappa values, comparing hypnograms from the same 
recording/subject, scored by the three expert scorers, first on PSG 
and then on in-ear-EEG signals—so quantifying the inter-scorer 
variability in the multisource-scored dataset.

Notably, the three PSG scorers exhibit greater coherence scor-
ing the PSG recordings, compared to when scoring the in-ear-EEG 
signals. Indeed, Fleiss’ kappa values for PSG hypnograms are 
found to be significantly greater (p < .001) than those between 
in-ear-EEG hypnograms, based on the Student’s t-test (α = 0.05). 
We employ a parametric statistical test given normal distribu-
tions, as stated by the Shapiro–Wilk test (α = 0.05).

For each sleep stage, we also assess the average agreement 
across all subjects between the PSG and in-ear-EEG consensus 
(Table 2), finding large discrepancies for the REM stage. The agree-
ment is evaluated according to precision, recall, and F1-score 
metrics, using the PSG consensus as the gold standard.

Comparison analysis: feature-based
JSD-FSI similarity-scores.
For each sleep stage, we report in Figure 5 a representative 
30-second epoch of preprocessed PSG and in-ear EEG recordings. 
These epochs serve as the basis for extracting both temporal and 
spectral features.

The most frequently selected features across the different data-
sets 

{
Dq, DCH1

}
 for all the three sleep stages (Supplementary Figure 

S) are the following: the relative δ, θ, α, and σ power bands; the δ/θ 
power ratio; the spectral flatness; the spectral variance; the skew-
ness; the kurtosis; the maximum first derivative; and the Hjorth 
activity and complexity. In addition, there are extra selected fea-
tures specifically for each sleep stage: the spectral skewness, the 
interquartile range, the Hjorth mobility, the Renyi entropy, the per-
mutation entropy, and the Higuchi fractal dimension for the awake 
stage; the relative β and γ power bands, the spectral skewness, the 
standard deviation, the number of zero-crossings, the spectral 
entropy and the permutation entropy for the NREM sleep stage; 
and the spectral energy, the relative γ power band, the spectral kur-
tosis, the standard deviation, and the spectral entropy for the REM 
sleep stage. The above-selected features are not to be understood 
as more or less relevant to the purpose of our comparison analysis. 
The not-selected features were ignored because of the redundant 
information they were bringing.

The common label-ground-truth reference (i.e. intersection 
computed on the labels coming from the two different sources) 
for subjects 3 and 8 do not show any REM epochs—lack of agree-
ment between corresponding PSG and in-ear-EEG consensus. 
Therefore, the results will not include JSD-FSI similarity scores for 
these two subjects in the REM class. Furthermore, whenever the 
in-ear-EEG channel or any of the PSG channels show some noisy 
epochs (e.g. no signal—constant amplitude—meaning no relia-
ble indicators of brain activity), we exclude that specific channel. 
This situation occurs mainly for the channel M2 for subjects 3 
and 6—with 79% and 82% of noisy epochs respectively. Hence, we 
exclude the channel M2 from the analysis for subjects 3 and 6.
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In Table 3, we report the averaged JSD-FSI similarity-scores 
computed between the in-ear-EEG and PSG channels for each 
subject and for each sleep stage, respectively—in Supplementary 
Figures 4–6 also as standard topographic images. Overall, the 
similarity between the PSG and the in-ear-EEG signals—in 
terms of JSD-FSI score—is high, on average 0.79 ± 0.06 in awake, 
0.77 ± 0.07 in NREM, and 0.67 ± 0.10 in REM. On average, there 
are no substantial differences with the in-ear-EEG compared to 
the corresponding PSG channel across all subjects. The spatial 
distributions in terms of JSD-FSI scores (any pair in-ear-EEG and 
PSG derivations) are on average consistent within the different 

Figure 4.  (A) Intrascorer variability (multisource-scored dataset). Boxplot distribution of the Cohen’s kappa values computed for each recording/
subject between the PSG and in-ear-EEG hypnograms—for each scorer. (B) Interscorer variability (multisource-scored dataset). Boxplot distributions of 
the Fleiss’ kappa values computed for each recording/subject between the three scorer experts for in-ear-EEG (in blue) and PSG (in red) signals.

Table 2.  Average precision, recall, and F1-score metrics 
evaluated across all subjects between PSG and in-ear-EEG 
consensus, considering the former as the gold standard

W NREM REM

Precision 0.84 ± 0.16 0.88 ± 0.05 0.65 ± 0.35

Recall 0.80 ± 0.21 0.95 ± 0.03 0.47 ± 0.27

F1-score 0.79 ± 0.14 0.91 ± 0.03 0.53 ± 0.28
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subjects and channels. According to the Kruskal–Wallis test (α 
= 0.05), significant changes in JSD-FSI scores are found among 
sleep stages (p < .001). In detail, based on the Mann–Whitney 
U-test (α = 0.05), there is statistical evidence that JSD-FSI simi-
larity scores for the awake stage are greater than NREM (p < .001) 
and REM (p < .001) ones; and that JSD-FSI similarity scores for the 
NREM stage are greater than REM ones (p < .001). Nonparametric 

statistical tests are used as the normality assumption is not met 
based on the Shapiro–Wilk test (α = 0.05).

When assessing the similarity between in-ear-EEG and PSG der-
ivations, and comparing it to the similarity computed among all 
the possible 210 PSG-to-PSG comparisons (JSD-FSI similarity scores 
computed from the PSG channels), similar values are observed.

In Figures 6–8, we show that, for every sleep stage, the blue 
distributions (i.e. JSD-FSI similarity scores from the PSG-to-In-
ear-EEG comparisons) consistently align with the red ones (i.e. 
JSD-FSI similarity-scores from the PSG-to-PSG comparisons). 
The only exception occurs for subject 8—no overlap was found 
between the two distributions in the NREM sleep stage. However, 
the absence of either a complete or partial overlap between the 
two distributions (PSG-to-In-ear-EEG and PSG-to-PSG similarity 
scores) does not directly imply a lack of overlapping information 
between the two different sources, that is, PSG and in-ear-EEG.

We have to keep in mind that the PSG-to-PSG JSD-FSI similar-
ity scores have been computed mainly to have a reference with 
which to compare our PSG-to-in-ear-EEG JSD-FSI values. Data 
from the same source (e.g. PSG signals recorded from the scalp), 
when compared against each other, should contain close or sim-
ilar information—resulting in a reference distribution of PSG-to-
PSG JSD-FSI similarity scores. Thus, the new in-ear channel, when 
compared against each of the PSG data sources—that is, channels 
derived from the scalp—should result in JSD-FSI values close if 
not equal to our PSG-based reference.

Figure 5.  Example of 30-second data samples from both PSG and in-ear EEG recordings, for each sleep stage. The PSG derivation considered is the 
C3-M2 channel.

Table 3.  Averaged JSD-FSI similarity scores computed between 
the in-ear-EEG and PSG channels for each subject and for each 
sleep stage, respectively

W NREM REM

 Subject 01 0.75 ± 0.04 0.79 ± 0.04 0.71 ± 0.06

 Subject 02 0.80 ± 0.02 0.80 ± 0.03 0.67 ± 0.05

 Subject 03 0.72 ± 0.04 0.75 ± 0.07 -

 Subject 04 0.78 ± 0.03 0.82 ± 0.03 0.72 ± 0.04

 Subject 05 0.84 ± 0.02 0.82 ± 0.04 0.75 ± 0.03

 Subject 06 0.78 ± 0.05 0.73 ± 0.09 0.62 ± 0.05

 Subject 07 0.83 ± 0.02 0.80 ± 0.03 0.73 ± 0.04

 Subject 08 0.74 ± 0.03 0.67 ± 0.03 –

 Subject 09 0.83 ± 0.03 0.73 ± 0.04 0.57 ± 0.05

 Subject 10 0.85 ± 0.04 0.79 ± 0.03 0.59 ± 0.06

 Average 0.79 ± 0.06 0.77 ± 0.07 0.67 ± 0.10
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To further analyze and to better interpret the results in 
Figures  6–8—in Supplementary Material—we report, for each 
sleep stage, the JSD-FSI similarity score reference distributions 
computed separately for each PSG data source, that is, scalp-
EEG-to-scalp-EEG (Supplementary Figures 7–9) and EOG-to-EOG 
(Supplementary Figures 10–12).

In Supplementary Figures 7–9, we want to investigate 
whether the in-ear-EEG shows information similar to the one 
from the scalp-EEG—by comparing the scalp-EEG-to-In-ear-EEG 
JSD-FSI distributions with scalp-EEG-to-scalp-EEG reference 
distributions.

In Supplementary Figures 10–S12 we want to investigate 
whether the in-ear-EEG shows information similar to the one 
from the EOG—by comparing the EOG-to-In-ear-EEG JSD-FSI dis-
tributions with EOG-to-EOG reference distributions.

As highlighted in the overlapping area in purple, the similarity 
between the in-ear-EEG and the scalp-EEG channels is higher com-
pared to the one between the in-ear-EEG and the EOG channels—the 
scalp-EEG-to-In-ear-EEG JSD-FSI distributions overlap with their cor-
responding reference distributions (scalp-EEG-to-scalp-EEG similar-
ity scores) for almost all subjects and in all the sleep stages.

Discussion
While evaluating the agreement between the PSG and in-ear-EEG 
hypnograms scored by the same scorer expert (hypnogram-based 
comparison analysis), we found a high intrascorer variability. 

The high variability—or inconsistency between the two different 
sources—is mainly due to the great uncertainty the scorers had 
in evaluating the in-ear-EEG signals (see the interscorer varia-
bility analysis). The Fleiss’ kappa values between the in-ear-EEG 
scorers are on average lower—and not consistent—compared to 
the ones computed on the PSG scorers. We may infer that the 
in-ear-EEG recordings are harder to score than traditional PSG 
signals. However, the heightened scoring complexity may not 
stem from the substandard quality of the in-ear-EEG signal, 
rather from the innovative nature of the EEG source captured 
from our ears—distinctly divergent from what scoring experts 
are used to looking at. The main constraint—compared to the 
traditional PSG-based scoring procedure—is that the scorers 
are assigning the sleep stages just relying on a single in-ear-EEG 
channel. The scorers—hence the physicians—are used to score 
our sleep considering simultaneously information that comes 
from different channels.

In our feature-based comparison analysis, we showed a 
substantial similarity in terms of JSD-FSI score—on average 
0.79 ± 0.06 in awake, 0.77 ± 0.07 in NREM, and 0.67 ± 0.10 in 
REM—between the two different sources. The in-ear-EEG signals 
are retaining information (in time- and frequency-domain) close 
to the ones we usually extrapolate through standard PSG deriva-
tions. This latter claim is in contrast to what we found following 
our alternative approach, that is, the hypnogram-based compar-
ison analysis, which mainly relies on the experience and knowl-
edge of the scoring experts. However, considering the agreement 

Figure 6.  JSD-FSI similarity scores distributions, that is, distributions derived from the PSG-to-in-ear-EEG (histograms in blue) and PSG-to-PSG 
(histograms in red) comparisons—for each subject in the awake stage.
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metrics between PSG and in-ear EEG consensus, it is evident that 
the discrepancy between the sleep scoring of these two sources is 
primarily due to the REM stage.

The high difficulty in scoring in-ear-EEG recordings compared 
to PSG data may highlight the need for the development of spe-
cialized scoring protocols for this new EEG data source, especially 
for the REM class. While it is true that there is an overlap/similar-
ity in information between in-ear-EEG and PSG—based on sleep 
feature analysis—it is also possible that this similarity does not 
necessarily imply that the signal tracings are actually the same.

The robustness of the JSD-FSI similarity scores—and the sig-
nificance of the similarity values per se—is further validated 
showing the clear alignment between the PSG-to-In-ear-EEG and 
PSG-to-PSG JSD-FSI score distributions. The similarity between 
the in-ear-EEG and any PSG derivation is close to the one we 
would find between any pair of standard scalp PSG derivations.

The overlap of information between the two signal sources 
suggests that with further development ear-EEG devices could 
become a more accessible and less intrusive solution for sleep 
studies, especially in home settings, compared to traditional 
PSG setup. The high JSD-FSI scores emphasize the use of mobile 
ear-EEG solutions as promising alternatives to standard PSG. 
Our findings are consistent with previous studies exploring the 
potential of the ear-EEG [2, 8–13]. Indeed, the comparison of the 
sleep scoring performances between ear-EEG and PSG recordings 
indirectly represents a measure of similarity between these two 
sources in the context of sleep analysis.

Some of these studies [9, 12, 13] also highlight the difficul-
ties in scoring the REM stage compared to other classes. Such 
a difficulty is consistent with our analysis, as we observe signif-
icant changes in JSD-FSI score between the sleep stages, with 
significantly greater values for the awake stage if compared to 
NREM and REM ones, and for the NREM stage with respect to 
the REM state. Our results, with the smallest similarity scores 
for REM sleep, are in line with what we already knew to date: 
the in-ear-EEG sensors may be not enough in distinguishing REM 
sleep stage—additional information from EOG signals is needed 
[3, 10, 16]. This claim is further supported by the results in 
Supplementary Figures 7–12—where the similarity of the in-ear-
EEG with EOG derivations was, overall, lower than the one with 
scalp-EEG derivations.

Worth highlighting, the primary contribution of this study is a 
methodological pipeline to quantify the similarity between PSG 
and in-ear EEG signals. While previous research on in-ear EEG for 
sleep has focused on developing methodologies for automatic 
sleep staging, our research aims to first emphasize similarity 
assessment as a foundational step for validating sleep metrics 
across any in-ear EEG device.

The main limitation of this preliminary study is that we can-
not make any comprehensive consideration regarding JSD-FSI 
consistency between subjects or channels—i.e. spatial distribu-
tion. There is a need to further validate the proposed method-
ology on a higher number of recordings—eventually involving 
subjects affected by different sleep disorders—increasing data 

Figure 7.  JSD-FSI similarity-scores distributions, that is, distributions derived from the PSG-to-in-ear-EEG (histograms in blue) and PSG-to-PSG 
(histograms in red) comparisons—for each subject in the NREM sleep stage.
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heterogeneity. A larger and more diverse dataset would also ena-
ble a more detailed analysis of sleep stages, including the differ-
entiation of NREM class into N1, N2, and N3 stages. Moreover, 
future research could explore additional sleep features, such as 
sleep spindles and K-complexes analyses, as well as connectivity 
features taking into account interactions between the different 
brain regions.

Supplementary Material
Supplementary material is available at SLEEP Advances online.
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guidelines and with informed consent from the participants. 
The data are available on request for noncommercial purposes 
(legal conditions ensuring data privacy and official ethical 
guidelines compliance will be defined in a “data transfer agree-
ment document,” together with a description of the analysis 
project).

Code Availability
To ensure the reproducibility of our analysis, the code has been 
made openly accessible and is hosted on GitHub.
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