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Abstract

Brain—computer interfaces are already improving the circumstances of a small subset of
the human population with neurological conditions (e.g. prosthetic control for paralysed
patients). On the other hand, brain-computer interfaces for the general population could
increase the potential for a better understanding of the brain due to generating more brain
data. As a result, such mass-market brain—-computer interfaces could improve the lives of
healthy people through more natural or efficient interactions with technology or people
around them or by directly altering human brains for certain benefits.

In this bachelor’s thesis, the author describes the first steps toward a mass-market and
generally applicable brain—computer interface software system that enables unidirectional
neural communication with computers via the cloud. The author introduces the term
neural/cloud interface in the current state of neuroscience research and the context of key
industry players.

Unlike in the natural sciences, a system such as a neural/cloud interface does not inher-
ently occur, but is only achievable through engineering; thus, it must be created before it
can be studied. Accordingly, through a case study project at the neurotechnology start-up
IDUN Technologies, the reader is educated on the exact definition, motivation, project
context and, most importantly, the results of building a neural/cloud interface system in
practice. The central supposition is that a neural/cloud interface system may already be
feasible with today’s software technologies and is not just speculation as in similar research
on brain/cloud interfaces.

In addition to the case study’s findings, an example of a cloud software architecture is
developed and discussed in detail to securely stream, process and store brain data over the
internet while respecting end-user privacy.

Ultimately, this work aims to be a stepping stone into this new and interdisciplinary
field between brain—-computer interface software and cloud computing by providing a
condensed overview of all critical aspects, insights and findings for future neural/cloud
interface engineers. This would be achieved by building on the knowledge gathered during
the implementation of this bachelor’s project.
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Chapter 1
Introduction

This chapter introduces the reader to the primary focus, key topics, and broad explanations
of this thesis. It also presents the supposition, goals, and objectives of its primary content

and structure.

1.1 Background

There has been a long-standing interest in developing neural interfaces—systems that
sense and interact with the nervous system’s electrical activity. Successful research into the
development of technologies that enable neural interfacing has been underway for decades,
with the first experiments being conducted by Jacques J. Vidal in the late 1970s (Vidal, 1977).
In particular, a related discipline focusing on the direct interaction between brains and
computers via a brain—computer interface (BCI) has gained momentum with the emergence
of companies such as Neuralink (Mor, 2021).

One aspect of BCIs is the development of imaging technologies that enable the measure-
ment of brain activity. A distinction can be made between different methods of measuring
brain activity signals at different locations. On the one hand, there are invasive sensors used
with electrocorticography (ECoG), a sensor-based! imaging method that places electrodes
on the surface of the brain; on the other hand, non-invasive sensors are placed on the
body, such as with electroencephalography (EEG). Both methods measure the electrical
field elicited by the firing of neuronal populations. However, the further away the electrode
is from the brain and the more tissue (e.g. scalp, skull, cerebrospinal fluid, and cortex)
lies between firing neurons and the measurement sensor, the more the spatial resolution
decreases.

A second aspect of BCls is the development of software that reads and interprets data
from sensors. Both aspects present their own set of challenges and complexities. Nonethe-
less, complete and applicable BCIs work in practice and have been used for many years
in patients with neurological disorders (BrainGate, n.d.). There are also consumer and
non-clinical BCIs available, such as the OpenBCI and Neurosity products, which aim to
democratise the use of EEG systems by offering low-cost hardware and open-source soft-

ware.

10ther options next to sensor-based imaging methods are, for example, scan-based methods such as
computed tomography (CAT) that utilises special X-rays to produce axial images of the brain.
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1.2 Relevance

The possibilities for sufficiently and directly connecting the human brain to the outside
world via computers are seemingly endless, given the purely physical? assertion that all our
feelings, memories, dreams, and thoughts are most likely the sum of electrical activities in
our brain. There are several use cases for utilising insights from our brain to interface with
computers, such as controlling prosthetic limbs for amputees (Campbell, 2014) as shown in
Figure 1.1, enabling communication for people with locked-in syndrome?® (Chaudhary et al.,
2022), or diagnosing neurological problems and improving the mental capacities of elderly
patients (Belkacem et al., 2020). These are just a few of the promising examples that could
be cited.

{!

: /

Fig. 1.1: An amputee is using his mind to control two robotic arms to
perform several tasks that require fine motor control (Campbell, 2014).

2There is research on the quantum mind that describes how classical mechanics cannot explain conscious-
ness; however, this is not considered in this thesis as this research is still in its early stages.

3Locked-in syndrome describes the paralysis of all voluntary muscles in its entirety, thereby making it
impossible for people to communicate with the outside world.
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These examples make it evident that BCIs can significantly impact the field of therapeu-
tics and accessibility for a small subset of the human population. However, one can envision
not only alleviating deficient living conditions but also improving the lives of healthy people
through more natural or efficient ways of interacting with technology or by directly altering
human brains for certain benefits such as the possibility to enhance or delete bad memories
(Spiers & Bendor, 2014) or record and guide dreams (Haar Horowitz et al., 2020).

Many use cases still seem a long way from being applicable today, yet many experts and
even entire companies are developing BCI hardware and software, such as Neuralink, that is
aimed at the general population (Urban, 2017). The general applicability of a BCI system to
the mass market will depend on several factors, of which the form factor and invasiveness of
the hardware are likely to be essential aspects. Nevertheless, the totality of the ecosystem in
which the software resides is a valuable aspect that should not be overlooked.

1.3 Opportunity

Whether it is a bidirectional and invasive BCI or a unidirectional and non-invasive BCI,
the data collected from the brain would always need to be processed, contextualised, and

classified to produce an intelligible output to interface with, as shown in Figure 1.2.

Brain Sensor Decoding Control

Unidirectional SR W
;1} ’ — /I > o SP

brain to machine

Stimulation

Bidirectional
machine to brain

A

Fig. 1.2: Conceptual difference between a unidirectional and a
bidirectional BCI and a simplified overview.

Most current BCI software systems being developed—for example, for a BCI implanted
in a living patient—are typically deployed in a local environment; that is the software system
and its components are located on a physically nearby computer.

The author sees an opportunity to move BCI software from local environments to the
cloud to enable a variety of benefits for the general population and mass market. The present
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thesis determines what components would be required by a cloud-based software system
that is ready for the mass market. The emphasis is on a holistic view of such a system, which

means that the entire technology stack and context are taken into account.

1.4 Supposition

There is already promising research on the implications of brain/cloud interfaces (B/CI)
by Martins et al. (2019) and Angelica et al. (2021), which analyses bringing hypothetical
large-scale BCI software systems into the cloud. Nonetheless, their research focuses on hypo-
thetical scenarios in the future, usually premised on the development of other technologies
such as neural nanorobotics, vital advances in 5G, or the presence of supercomputers in the
cloud (e.g. for the augmentation of the human brain); thus, they are somewhat removed
from today’s realities. To distinguish the research presented in this thesis, the author coins
the term ‘neural/cloud interface’ (N/CI), which refers to a holistic software system that con-
nects a neural interface device such as a BCI to the cloud and then to other neural interfaces,
software systems, or physical devices.

The primary supposition is that an N/CI is feasible with contemporary software tech-
nologies, requiring only theoretical groundwork based on empirical software engineering.
To shed more light on this, this thesis looks at the process and lessons learned from the

author’s perspective in developing a real-life N/CI in the industry.

1.5 Goals and objectives

The overarching goals of this thesis are to provide an overview of the context and definition
of an N/CI and, most importantly, the software components of which it is composed. In
order to achieve these goals, the author must achieve the following objectives:

1. Describe the context and motivation behind creating an N/CI.

\S)

. Establish a clear definition as well as the distinctions and advantages of an N/CI.

w

. Identify and define the most relevant aspects required to realise an N/CI in practice.

4. Illustrate an example architecture of an N/CI to implement its components in practice.
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Project context

This chapter describes the project’s context and the current literature findings. The lim-
itations of neuroscience are discussed as well as the state of current non-invasive and
sensor-based BCls, the motivation for developing cloud-based BCI software for the general

population, and the broad definition of an N/CI.

2.1 Limitations of BCIs

The possibilities of BCIs are not without limitations. In addition to hardware limitations, the
author addresses a broader issue related to neuropsychology that directly correlates with
the software aspects, in addition to the challenges of computability.

2.1.1 Decoding neural data

It is important to emphasise that the task of decoding neural data is different from decoding
thoughts, which is a critical factor for BCI software to enable the control and interaction
via thoughts. Moreover, decoding neural data and extracting the thoughts behind it so
that the software can understand them are disciplines in their own right. This is similar in
machine learning use cases: for example, getting computers to recognise letters written on
a photograph is a very different problem from interpreting the written words in sentences
(i.e. computer vision and natural language processing). Another part is understanding the
sentences and their meaning, as in natural language understanding (NLU).

NLU is considered an artificial intelligence (AI) hard problem, which means that the
difficulty of these computational problems is assumed to be equivalent to solving the
central problem of artificial general intelligence1 (Demasi et al., 2010). Understanding less
structured data, such as neural data, is more complex than understanding structured and
human-invented syntax such as written language because it contains more hidden features
and semantics than a paragraph of text. As a result, the author assumes that completely
understanding neural data can also be considered an Al-hard problem. This constraint
illustrates well how far current research is from being able to interpret a person’s thoughts
based on measured neural data.

IBased on the assumption that general human-level intelligence could be computable.
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2.1.2 Abstract thoughts

To further emphasise the complexity of interpreting neural data, a practical example will
be presented: Imagine a red house in the middle of a forest. Depending on the individual
thought process, one might imagine the house with temporary visual imagery in mind, as in
visual thinking, or one might imagine it more verbally, such as conceptually comprehending
each word sequentially of what a red house is and that it is located in a forest (Amit et al.,

2017). Figure 2.1 illustrates the range of options.

Target sentence

“Imagine a red house in the middle of a forest” |

Verbal cues Visual cues Visual imagery
T R

et || A

< >
< »

Verbal thinking Visual thinking

Fig. 2.1: Difference between verbal and visual thinking using the target
sentence of a red house in the middle of a forest.

Additionally, it should be considered that different types of thoughts exist at different
levels of abstraction and complexity. One can assume that the visual image of a red house in
the forest is more abstract and far-fetched than, say, the movement of one’s own thumbs,
which has a clear physical counterpart. It becomes even more complicated when one imag-
ines abstract concepts that cannot be visualised, such as the idea of a company. A company
is an abstract, collectively agreed-upon concept that lacks a clear physical counterpart?; it s,
therefore, even more complex to decode the meaning of measured brain activity in this case
than with the red house.

2Some people might think of a company building when imagining a company, others might imagine their
website, their logo, or physical products.
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2.1.3 Technological limitations

Even though mind reading or decoding abstract thoughts seems difficult, some functional
tasks of the brain are still extractable due to their localisation. Localisation means that these
signals are generated by local brain areas that can be identified, such as the motor cortex,
which has been shown to be responsible for muscle movement (see Figure 2.2).

o f“:

. : R i
W4

B. Left Thumb Tapping

Fig. 2.2: Localised neurons during right- and left-thumb movement using
functional magnetic resonance imaging (fMRI; Rashid et al., 2018).

Examining the areas of the brain responsible for activating individual muscle strands
can yield a comparable response of muscle stimulation in the brain and thus be measured
as input for BCI software, for example, to move a prosthesis. However, the more specific,
behavioural, and abstract the thoughts are, the less spatially visible are the responsible brain
areas. By reference to the intention of identifying, for example, the thought of a red house in
a forest, the author has identified three technological limitations:

* To understand single thoughts, it is essential to have sufficiently clear data with a cer-
tain level of detail (e.g., the level of detail that elicits the action potentials of individual
neurons®) and temporal precision (an action potential has a short duration of about
one millisecond [Byrne, 2021]) to perform studies to extract possible localisation of

3Action potentials are the fundamental neurobiological and neurochemical processes through which
neurons transfer information to each other.
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individual thoughts. Current neuroimaging technologies cannot capture in sufficient
detail every process of the entire brain at once to extract the activity of individual

neurons while also having high temporal precision.

e Even if we could measure every single neuron in the brain with high temporal precision,
we would have an extreme amount of data generated concisely. Suppose we would
collect a float* per neuron that represents the rate of change in voltage with respect
to time with a frequency of 1 millisecond and then record each neuron in the brain a
million times a second (taking into account that the average human brain has around
86 billion neurons); under these conditions, we would generate 305.53337637684
petabytes of data per second. This is currently not feasible for commercially available
storage and processing resources.

e Even if we had the technology, it would still be challenging because of the difficulty of
reproducing experiments in neuroscientific studies—usually referenced as the ‘repli-
cation crisis’ (Maxwell et al., 2015). It is probably impossible to generate clean-slate
brain data that is comparable to previously recorded data since our neurophysio-
logical brain tissue changes over time due to neuroplasticity (Nierhaus et al., 2021).
Moreover, we are in different states of mind every millisecond of our existence, which
can produce different effects, such as insufficient sleep, being disturbed by something,
mental distraction due to an important event that may have occurred since the last

measurement, or a salient thought that randomly occurs while recording neural data.

2.1.4 Lackofdata

As mentioned in the previous section, the last two points depend on advances in storage
systems or the possibility that we do not actually need such precise brain data to understand
single thoughts. However, to address the first point, some promising solutions already
exist for measuring large parts of the brain with high temporal and spatial precision, such
as time-domain functional near-infrared spectroscopy (TD-fNIRS), which the company
Kernel employs in its Flow device (Ban et al., 2021). TD-fNIRS sensors detect changes in
concentrations of oxygenated and deoxygenated brain cell activity by using near-infrared
light in response to neuronal activity. According to Kernel, the precision of TD-fNIRS is
sufficient for a clearer understanding of the brain and using it for BCI applications. The

company, however, claim that collecting and organising longitudinal brain data from a

4The size of a float on a Windows 64-bit application is 4 bytes which was used for the calculation.
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variety of subjects is the key to solving the most difficult challenges in neuroscience (Kernel,
n.d.).

Building on Kernel’s claim, a recent publication also claims that even datasets with
several hundred people are too tiny to offer consistent insights into the brain; as a result,
most published neuroscience studies with dozens or even hundreds of people could all be
incorrect in their conclusions (Marek et al., 2022). In neuroscientific studies, brain tissue and
activity variations have been linked to variances in cognitive capacity, mental health, and
other behavioural features which set an important foundation for our current understanding
of the brain. Neuromarkers® of behavioural features are frequently sought in such studies to
further understand the brain. Marek et al. (2022) claim that most of the neuromarkers would
not work when the collected dataset is more extensive, which would pose a general problem
for the field of neuroscience. UK Biobank’s collection of brain scans is one of the first efforts
to solve this problem (“Imaging study”, n.d.), but it is still far from what we might need since,
as Marek et al. (2022) claim, we might even need millions of datasets to start understanding
the brain (Callaway, 2022). This is both fascinating and a possible significant constraint for
BClIs, because understanding the brain is essential to making sense of the measured data
they interface with.

A counterargument, however, is offered by Andrew Ng, artificial intelligence (Al) pioneer
and founder of the Google Brain research lab. Ng believes that machine learning, which
underpins all BCI software, should be developed in a data-centric manner, which means that
quality should be preferred over quantity. That is, the quality of the data on which models
are trained should be as high as possible to answer specific research questions rather than
focusing on merely collecting a huge amount of data (Brown, 2022). However, this brings one
back to the replication crisis, which is the difficulty in generating clean or universally valid
brain data comparable to previously collected data due to the nature of our ever-changing
brain.

Ultimately, there will almost certainly always be a mix of both approaches. As a result, for
generally applicable and mass-market-ready BCls, a relatively large amount of qualitative
brain data collected in specific and reproducible experiments or environments is required.
This is where high-end, customer-focused BCIs could come into play because the adoption
rate of a device suitable for everyday use is higher than the number of subjects in research
labs, resulting in larger and more longitudinal datasets. This, combined with more targeted
experiments, improved neuroimaging technologies, and advances in machine learning,

could unlock enormous potential in brain research.

5A neuromarker is a biomarker that is based on neuroscientific data to detect biological properties such as
a disease or illness. For more information, the interested reader can refer to Jollans and Whelan (2018).
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2.2 BCIlandscape

This section will discuss the current landscape of customer-focused and non-invasive BCls,
their applications, and the distinctions within their software offerings.

2.2.1 Real-world BCI applications

As mentioned in section 1.1, consumer-focused BCI products are already commercially
available. OpenBCI, a non-medical BCI company, does not provide a specific use case, but
they provide hardware (as depicted on Figure 2.3) as well as software that is universally
applicable. These can be used in research wherever EEG is employed and in developing BCI
applications. Several neurofeedback or research apps have been created using OpenBCI’s
products (OpenBClI, n.d.-b). Taking this information into consideration, one can see that the
OpenBCI customer is responsible for developing their own BCI applications or incorporating
it into their research, rather than having a sophisticated end-user application directly from
OpenBCI.

Fig. 2.3: OpenBCI’s EEG Fig. 2.4: NextMind’s BCI Fig. 2.5: Muse’s meditation
device (Be Superhvman, 2017). device (Louise, 2019). headband (Muse, n.d.).

Another example of a commercial BCI is NextMind’s product, as shown in Figure 2.4.
The company does not focus on having an end-user application for its BCI, but focuses
instead on offering a software development kit (SDK) so that the Unity real-time engine can
use NextMind'’s technology for brain-controlled actions in video games. One significant
difference between NextMind and OpenBCI is that NextMind includes a built-in classi-
fication of neural data captured by hardware—in this case, classification of active visual
focus on virtual objects based on steady-state visual evoked potentials (SSVEP). Because its
business model is presumably based on the unique selling proposition of its active visual

focus classifier, NextMind does not provide access to the raw EEG data collected by the
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CHAPTER 2. PROJECT CONTEXT

sensors. Nonetheless, NextMind’s product is less focused on a specific use case, as it is
applicable to all kind of games inside the Unity engine. A relatively closed and specific
BCl is illustrated by the EEG headband by Muse, as shown in Figure 2.5. Its purpose is to
measure meditation and sleep. The company also offers an end-user app to help people
better understand their meditation and sleep and how to improve them. Compared to the
previously mentioned products, the Muse headband is not a unidirectional BCI per se as
there is also biofeedback based on neural data. However, the key difference between Muse
and OpenBCl is that the neurotechnology has been abstracted. Users do not need to know
anything about neuroscience, neurotechnology, or the interpretation and classification
of neural data to achieve useful functionality for their use case. They also do not need to
understand the software system’s underlying architecture. They only need to know how to
pair the device with their smartphone via Bluetooth.

Aside from full-stack BCI solutions, in which a company provides a complete BCI so-
lution, including hardware and software, some companies focus solely on the software
aspect. One such example is Neuromore, a company that provides a neural signal processing
software platform. The company is hardware agnostic, which means one can plug nearly
any BCI hardware or sensor into their computer and connect it to their Neuromore Studio

software.

Test D
128.00 KB
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1.604021
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Fig. 2.6: Screenshot of the Neuromore Studio software (Neuromore, n.d.).

Neuromore Studio, as shown in Figure 2.6, is free and open-source software that runs

locally on various platforms. It provides a variety of drag-and-drop interfaces for creating
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CHAPTER 2. PROJECT CONTEXT

and managing signal processing pipelines. For example, one can transform EEG data to
extract band power, create triggers based on band-power selection, and generate conditional
outputs to perform tasks such as moving a character in a video game. The author aims to
differentiate the offerings of these consumer-oriented BCIs along a spectrum. On one side
of the spectrum are BCI companies that provide the hardware (with software that at least
connects to the device) and are then more generally applicable to use cases not defined by
the company behind the BCI (such as OpenBCI). On the other side are BCI companies that
are application-specific in terms of both the software and the hardware, such as the Muse
headband.

Although this thesis focuses on consumer-oriented BClIs, the applications of various BCI
offerings can still be distinguished based on whether they are more consumer-oriented or
research-oriented—such as the distinction, for example, between NeuroSky (a company
creating EEG-based BClIs for hobbyists) and Emotiv (a company creating professional and
expensive EEG systems), which are more research-oriented. However, both NeuroSky and
Emotiv provide a research version and a consumer or enterprise version of their software
and hardware, aiming for general-purpose applicability across customer segments and
use cases. Other considerations include whether the applications are steady-state evoked,
such as those based on a frequency of noise laid on top of virtual objects to detect which
object the person is looking at (e.g. NextMind), or whether they track the totality of mental
states without evoking neural signals with external stimuli, such as in tracking sleep or
concentration levels, both of which arise primarily inside the brain. This distinction can be
labelled as passive, active, or reactive BCI, as Alimardani and Hiraki coined in their work on
passive BCIs (Alimardani & Hiraki, 2020). However, the author does not want to include this
dimension because it would introduce additional complexities related to the BCI software
application layer.

The application layer, as shown in Figure 2.7, is the part of a BCI that acquires the
interpreted data from a classification model and turns it into applicable functionality to
interface with a physical or digital counterpart to perform functions such as moving a player
in a game or initiating sound on the computer via its speakers. There is also the physical
part, the brain, and a possible physical interaction counterpart in the form of, for example, a
robot arm. The totality of the software stack is responsible for processing the data, that is,
extracting the relevant information from the raw data and turning it into any desired and

meaningful output for the application layer.
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Fig. 2.7: Architectural overview of BCI components.

2.2.2 Unobtrusive hardware and software

The unobtrusiveness of hardware and software is another aspect to consider when discussing
BCIs. Unobtrusiveness in hardware means that it is either not visible at all®, as when
sensors are implanted beneath the skull, or that it is in a form factor that is already socially
established. The hardware prototype of IDUN Technologies, a Swiss startup, as shown in
Figure 2.8, measures brain activity in the ear canal that aims to resemble the form factor
of established in-earbuds. Figure 2.9 shows the Notion product from Neurosity, which
measures EEG on the head and is not comparable to a socially established form factor such
as earbuds. What is considered socially established and accepted truly depends on the
society and context, as one could argue that wearing a Neurosity device under a hat while
talking to a friend is more acceptable than wearing in-earbuds. Still, the implications of
different form factors must also be considered, such as the possibility of moving the device
and thus creating motion artefacts in the signals or the position of the sensors. The ear canal
is ideally located close to the brain’s auditory cortex but not so much to the visual cortex,
which is located at the back of the head. However, further hardware implications for BCIs
are not a topic covered in this thesis.

Nonetheless, it is perhaps not as simple to discuss the unobtrusiveness of software as
it is with hardware. Unobtrusive’ software, as defined by the author, is the abstraction of

the underlying software or system that executes the logic to fulfil a task without the user

60ther things related to the overall user experience (UX) are sometimes included in the notion of unob-
trusiveness, such as comfort, reusability, and convenience; however, the author is implying only physical
characteristics such as shape and size.

"Other words for unobtrusive could be discreet, fully-integrated, invisible or simply ‘in the background’.
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Fig. 2.8: IDUN Guardian hardware, Fig. 2.9: Neurosity Notion hardware,
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knowing what the technical requirements are. For example, to use an HP ENVY Photo 6200
printer with one’s Android phone, one must first download the HP Smart app and the HP
Print Service Plugin app that acts as a driver for the printer to get it set up and running
(HP, n.d.). In the case of the HP printer, the user must understand some of the underlying
technical requirements in order for it to work, rather than simply concentrating on the task
of printing something. An example of unobtrusive software is a computer mouse that one
simply plugs in and starts using immediately®.

Unobtrusive software in BCI refers to the ability to connect one’s hardware to the com-
puter or smartphone and use it without the need for additional software such as drivers or
command-line interface (CLI) software. For example, to use an OpenBCI device, one needs
to open the graphical user interface (GUI) app, connect the hardware, presumably test its
quality, begin a data stream session, and output the stream via a network system such as a
Lab Streaming Layer (LSL), connect to the signal from software such as Neuromore Studio
(OpenB(lI, n.d.-a), run the data through a classification pipeline, and then connect the
output from Neuromore to a video game via the engine itself to have controls for the video
game. Clearly, this software is not unobtrusive. There are examples of software included
as an executable file, and which is thus relatively unobtrusive; but this software is closely

linked with the hardware and the brand behind the hardware, or it is in the proof of concept

8Unobtrusiveness usually correlates with usability, but it is not always the case; more advanced users would
not consider locked-in abstraction as more usable.
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(PoC) stage rather than a production-grade application. Buying a new pair of headphones
and plugging them into one’s computer to enjoy neuro-enhanced” experiences interacting
with the brain’s outputs or measuring brain data across all apps and the operating system
would be examples of truly unobtrusive BCI software.

2.2.3 Production-grade software

Another aspect of BCIs is the state they are in, such as the production maturity of the
software. There is no clear definition of what production-grade software is; but in most

cases, software developers agree on the following characteristics:

» Software that works at any time when access is required. It is therefore capable of

frequent and intensive use in commercial or industrial environments.

* Software whose behaviour is deterministic and predictable and is, therefore, well-
tested, well-documented, and optimised in terms of speed, efficiency, and security
for the given context (e.g. the size of the user base). Usually, developers agree on a
Definition of Done (DoD) inside their team to what is considered production-ready;
some examples include test coverage of 80+%, peer-reviewed and commented code,

and a common code style guide.

* Software that runs in a production environment—that is, on a cloud computing
cluster for actual users rather than in a test environment for test users or on hardware
delivered to real customers—and that can adapt itself to the context, such as to a higher
access rate or possibly insecure user-generated input. In most cases, especially in
cloud computing, production-grade also means larger datasets (such as in databases),
the possibility of a greater number of edge cases due to a larger user base, and most

importantly, more available computing power on production instances.

As stated earlier, most BCIs, such as the OpenBClI, are usually not intended for production.
They are intended for PoCs such as controlling objects in games or conducting research.
End-to-end and full-stack BCIs for production are rare, as most are highly specific and not
intended for general applicability (such as the Muse headband) or the software aspect is
intended for PoCs or research (such as with Emotiv). Pure software products, such as the one
from Neuromore, lack the hardware component and lack an SDK that can be integrated into
existing software for a variety of platforms. Neurosity aims to provide a universally usable

and unobtrusive software stack that is even open source. However, because the hardware is

9Neuro-enhanced software can be described as adding additional features to input methods via the brain.
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not unobtrusive enough, it does not meet the author’s definition as mass-market-ready and
production-grade—apart from the fact that it is not known whether their software stack is
aimed to be used in production (Neurosity, 2022) due to third-party developers providing
disclaimers that it is a work in progress (Turney, 2022)). Companies such as Neuralink are
presumably working on a general-purpose, unobtrusive, and production-grade software
system that enables developers to build production apps and even platforms on top of it
for a variety of use cases without being limited (Musk, 2019). Since the intended hardware
is also unobtrusive in its form factor (being implanted), Neuralink has a high potential to
become one of the first general applicable and mass-market-ready BClIs if one ignores that

surgery is required to acquire the device (Neuralink, n.d.).

2.3 Definition of an N/CI

All the previously mentioned aspects feed into the definition and motivation of an N/CI,
which the author introduced as a new term in section 1.4. Appendix A goes into more detail
about the motivation and clear definition of an N/CI, and the aspects of cloud computing
in combination with BCI software that can be displayed in a three-dimensional axis, as
shown in Figure 2.10. The invention of the term ‘N/CI’ was a byproduct of this project’s

implementation and will be discussed in more detail in subsection 4.2.2.

Unobtrusive NICI
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Specific <
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PoC Obtrusive

Fig. 2.10: Visualisation of the term neural/cloud interface with its three
axes and differentiation of six terms.
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Chapter 3
Methodologies

This chapter describes the project-related academic methodologies that fall within the
author’s situation and experience as well as the planned approach to achieve the goals and
objectives of the thesis. The reader is introduced to the rationale for the intended workflows
and software tools.

3.1 Derivation of the case study

In October 2021, the author began working as a cloud software engineer at IDUN Technolo-
gies, an ETH spin-off startup in Ziirich, to further develop their existing software products.
IDUN had already created a PoC software system that included a web-based single-page
application (SPA) hosted on AWS Amplify, a backend-as-a-service product aiming to simplify
the deployment of backends for mobile and web apps. IDUN'’s in-ear sensor sent EEG data
to a physical network bridge via Bluetooth and then to the cloud via the internet. The raw
EEG data' was saved and made available for download in various file formats.

Time series of raw dataset

3750 M

-4000 /\fJ
-4250
-4500

0 50 100 150 200
Time (s)

Ampltude (uV)

Time series of bandpassed dataset

Ampltude (uV)

0 50 100 150 200
Time (s)

Fig. 3.1: Difference between raw and filtered data from IDUN’s product.

In addition to raw data, the IDUN SPA provided processed data, such as filtered data,
which included low-pass and high-pass filtering of EEG data as shown in Figure 3.1. This
processed EEG data was then saved alongside the raw version on the cloud.

'Raw EEG data refers to data measured by the in-ear sensor without any additional processing.
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The EEG data could also be visualised in near-real-time on the SPA as a time-series
X- and Y-axis plot. Additionally, users could control the device by sending start and stop
commands to the hardware components. The PoC system, whose architecture is shown
in Figure 3.2, was in a relatively unstable state and had various error sources that made it
impossible to reliably record EEG data for more than a few minutes, making the product
unusable for existing customers or a mass-market launch. While working on the system, the

author encountered various technological bugs and flaws as described in Appendix B.

Fig. 3.2: IDUN’s software architecture at the end of 2021.

Due to growing challenges with the existing software system and an ever-increasing
technical debt from the software not being test-driven or developed with clean code quality
standards (resulting in bugs and quirks that are difficult to track down), the author proposed
to halt the implementation of new features and restructure the system from the ground up
using a software engineering-oriented approach. The company’s management approved the
request for this redevelopment in early December 2021. At the time, the author was already
working on his original bachelor’s project, which focused on an EEG-controlled multiplayer
game, assuming that IDUN’s software system would be stable by the time the bachelor’s
project began. The original focus of the project was officially changed at the end of 2021 to
create a thesis on the redevelopment of IDUN'’s cloud software.

18



CHAPTER 3. METHODOLOGIES

3.2 Case study

As previously mentioned, IDUN Technologies is a full-stack company that produces in-ear
EEG sensors in the form of earphones. Their vision is to sell their hardware and license a
software product coupled with the hardware called Neuro-Intelligence Platform (NIP), as

shown in Figure 3.3.

Pre-processing
on the edge by IDUN Algorithm

Brain Signals '
captured by DRYODE™ in-ear EEG
sensor
™ /

b A

.

Controlled
Gateway into the IDUN cloud

Interventions
by Ecosystem Partners

— ..

Signal Processing
with ML classifier in IDUN cloud

Actionable Insights
powered by IDUN API

Fig. 3.3: IDUN’s vision of a closed neurofeedback loop (IDUN, n.d.).

The essential mission is that an unobtrusive BCI device, such as an in-ear headset, can
be worn for the majority of the day while measuring neural data that is sent in real-time to
the cloud to process and classify actionable insights that other developers can use to build
their interventions (e.g. apps, websites, and games) on top of it to promote mental health
and well-being. Furthermore, the aspect of longitudinal data is essential, implying that it
could be advantageous to store neural data over a long period and run classifiers on it from
time to time to understand one’s brain better—one of the possible solutions to the challenge
of a lack of data described in subsection 2.1.4.

Moreover, it is essential to select an appropriate research method to develop a system
that would fulfil the company’s mission and vision. The author chose a case study because
itis an effective method for dealing with unusual and atypical cases while providing new

and unexpected perspectives in certain situations such as in a deep-tech startup like IDUN.
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3.3 Procedure

This section describes the planned procedure for conducting a case study-based research
methodology to develop the proposed N/CI at IDUN Technologies as part of their NIP.

3.3.1 Project stages

The goal was to conduct qualitative research and examine the use case from various per-
spectives. In addition, two other methodologies were used in the case study: (a) expert
interviews, which entail locating experts on topics such as cloud or BCI and asking them
questions that will assist in answering implementation questions; and (b) group discussions,
which aim to learn about people’s attitudes and opinions about related topics.

Neuromarker
implementation

Sleep & Hearing Health New biomarker exploration
and personalised algorithms

‘ Neuromarker
validation

Proof of
technology

Wellbeing and Mindfulness
Emotion Classification

Sleep Health &
Hearing Healtl

Users 100+ 100k+ 100m+

Stage - Guardian PoC Guardian deployment Guardian for the masses

Years 2018 -2020 2021 2022 2023 2024 2025 2026+ 2027++

Fig. 3.4: IDUN’s plan to achieve their goals (IDUN, n.d.).

Before defining the project stages, it is essential to look at the timing of IDUN'’s roadmap,
as shown in Figure 3.4. There are three essential pieces of information: the stage in which
the technology resides, the estimated user base size, and the time frames that should be
applied to these stages. The author was working towards a version scheduled to be released
in 2023—that is, working on the N/CI placed in the Guardian deployment phase. As the
company is still implementing the first neuromarkers into the product and is focusing on
two use cases (sleep and hearing health) due to the size of the team and the mass production
of hardware and sensors, the sales team is targeting the sale of devices to about 100,000
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people. Another constraint is the deadline of the bachelor’s thesis of the author, which is
set for the 5th of August 2022. User size, company stages, and the deadline for the thesis
are important context information for defining the project stages for this use case. The
proposed project stages to execute the case study are presented in Table 3.1.

Project stage Description

Based on the internal hardware, the neuroscience and data science departments and the IDUN mission

1.1 Define key technical and roadmap, the author needs to define the purely technical requirements and constraints. Some
requirements and constraints are, for example, hiring of advisors, time limits and risks due to investment rounds. Some purely
constraints technical requirements come from, for example, the firmware team or the material scientists, such as maximum

latency or the data structure of the digitalised and amplified EEG.

Already since the beginning of the original bachelor thesis, the author started to do literature research in
the field of BCI, which is very helpful for the new focus. Further literature review now includes

books on data-intensive applications and cloud, articles and research papers.

Defining user personas with IDUN’s product manager, application engineer and sales team, finding
real people to represent these personas, preparing an external interview framework and questions,
gathering as many insights as possible.

Based on the insights from the user interviews, conduct a creative workshop with IDUN'’s product
manager and application engineer. The results are design artefacts such as wireframes, user flows,
interactive prototypes and architecture diagrams which are essential for internal group discussions.
The design artefacts are used for an internal validation with the department heads. Several group
discussions are held with each department, ranging from materials science to business development.
Based on the group discussions, the artefacts are adapted and improved.

Define experts in different areas of BCI, cloud and EEG, and neuroethics. Create a framework for

3.2 Expert interviews expert interviews and questions that are still unclear or open based on the design artefacts. Conduct
expert interviews and gather as many insights as possible to adapt and improve the design artefacts.
While the design process is still ongoing, the author can already start implementing the most important
4. Start bootstrapping technical requirements with anything that is a flexible bootstrapping of internal development
processes to ensure quality assurance, for example, not being tied to the other phases.

IDUN works with Scrum, for this the author has introduced Scrum in the research and development
department. Scrum at IDUN has three-week sprints and there are ten sprints from January 2022 to the
end of July 2022 that can be used to go through the design process and implement the designs. In the
process, there are several iterative processes to validate and test the increments of the system based on
insights from the implementation, ongoing literature research, insights from other departments or the
design process (i.e. user interviews) that is still ongoing.

1.2 Extensive literature
research

2.1 External user
interviews

2.2 Creative workshop and
prototyping

3.1 Internal group
discussions

5. Iterative and agile
implementation via
Scrum

Table 3.1: Project stages of the bachelor’s project.

Stage 1.1 is the crucial stage before starting anything else. Stage 1.2 is continuously in
progress. Stages 2.1 to 3.2 take place simultaneously while Stage 4 is underway?. As soon as
Stages 3.2 and 4 are completed, Stage 5 can be started.

3.3.2 Group discussions

The author believes it is critical to conduct user interviews with external individuals. Conse-
quently, this informs the development of a deep-tech-focused product in such a way that
extensive company-specific knowledge is not required. Based on the user interviews, the
goal is to create design artefacts in the design tool Figma for GUI-related topics as well
as in the whiteboard collaboration tool Miro for architecture-related topics. These design
artefacts are utilised to communicate the outputs of the design process to IDUN’s internal

2Number 4 refers to bootstrapping, which usually refers to the practice of setting up development environ-
ments that include initial Git repositories, folder structures, and creating accounts on cloud providers.
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staff based on the findings from the external user interviews. The ideas and findings should
be presented and validated relative to IDUN staff’s understanding and product perceptions
via internal group discussions. Because the development of a complete neurotechnology
product involves many disciplines ranging from physics to machine learning, the company
must have a shared understanding of what the software component of the NIP—that is, the

N/CI—will look like and what functionalities it will have.

3.3.3 Expertinterviews

It is critical to consult experts through group discussions after the external and internal
validation and design process and its iteration. In the author’s experience, it is difficult to
engage consultants at an early stage of the process without knowing what one wants to build
because advisors, say, from a consultancy firm, tend to push for commercially oriented ideas
to generate their revenue rather than thinking about the project’s long-term success. Experts
are chosen based on the author’s experience and the experience of other IDUN Technologies
employees, such as data scientists and neuroscientists. According to a previous blog post by
the author, the importance of ethics in the field of BCl is critical (Burger, 2021). As a result, it

is crucial to include neuroethics experts in the plans and ideas for IDUN’s N/CI as well.

3.4 Software and tools

There are many software and tools that can be used to construct a comprehensive software
system such as IDUN’s N/CI. The author had some leeway in deciding which software and
tools (i.e. libraries and frameworks) to use. Nonetheless, some software and tool limitations
should be considered when beginning the implementation:

* IDUN has received a large number of credits from Amazon for its AWS account, which
should therefore be used to avoid creating redundant costs when using another cloud

provider.

* The Python ecosystem has strong roots among engineers and researchers at IDUN,
which should be taken into account. Examples of this are the Python packages SciPy
or MNE for processing and visualising EEG data, which do not exist in any other
language.

e The author needs to familiarise himself with the software and tools required to build
IDUN'’s N/CI. For example, the AWS cloud would be an example of the author needing
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to transfer his knowledge from the Google Cloud Platform (GCP) experience and

understand different ways of implementing certain cloud features in AWS.

* Any new tool that is not open source and free to use should be carefully considered in

terms of future maintainability, security, and learning effort.

* Wherever possible, redundancy in the workload should be avoided, as a venture
capital-funded startup like IDUN has a particular runway time that describes the
company’s remaining time before it runs out of cash. Spending an entire sprint
working on something that is then thrown away can be business-critical, so every
software and tool decision should be carefully weighed.

3.5 Checkpoints for progress

Progress is reviewed at the end of each three-week sprint. IDUN’s entire research and
development team and stakeholders, such as C-level management, attend the review events.
Each department asks questions about the author’s progress and findings. The planning for
the upcoming sprint will take place based on the topics discussed in the reviews. Asana, a
project management tool, mirrors the overall product backlog and the personal backlog of
the author’s bachelor’s project and tracks progress in terms of story points and remaining
epics in its dashboard. In addition to Asana, documentation of all project stages will be
documented in Notion. Screenshots of the mentioned documentations are attached in
Appendix G.

Before moving on to the next chapter, it should be noted that the quality of the proposed
project stages is an essential part, made even more crucial when one considers the extensive
list of flaws in the current IDUN software system, as summarised in Appendix B. These flaws
can only be avoided by implementing extensive quality assurance measures (i.e. unit tests
and automated continuous integration pipelines) during the bootstrapping project stage.
To quote Robert C. Martin from his book Clean Architecture: ‘The only way to go fast, is to go
well’ (Martin, 2018).
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Chapter 4
Implementation

The implementation details of creating the software components for the NIP of IDUN are
covered in this chapter, along with key events in the empirical software engineering process

such as the recognition of novelty and the requirement for an N/CI definition.

4.1 Timeline

Procedures listed in the project stages in subsection 3.3.1 are a good guide for project
implementation; however, in the end, such plans run in unexpected ways. As a result,
researching and implementing a non-trivial system such as an N/CI requires a high level of
agility.

The effective timeline at the time of writing is shown in Figure 4.1; it includes the previ-
ously mentioned project stages but is structured differently from what was initially described.
Table 4.1 explains why some project stages were completed differently than initially assumed.

Jan Jul
[ 1.2 Extensive literature research ]
1.1 Define key technical 3.1 Internal 3.1 Internal
requirements and constraints group discussions group discussions

77777777777777777777777777777777 . ) 2.1 External 2.2 Crea. 3.2 Expert
3.2 Expert interviews H " 3 s N
user interviews workshop interviews?
4. Start bootstr.? { 4. Start bootstrapping ] 4. Start bootstr.?
5. Iterative and agile implementation* [ 5. Iterative and agile implementation ]
1 2 3 4 5 6 7 8 9 10
N J
Sprints

Fig. 4.1: Effective timeline of the last 10 sprints with project stages in
white and specifically planned stages outlined in grey.
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Special stage Description

The author was able to use the first expert discussions in advance thanks to the help of one
[1] 3.2 Expert of the sales staff’s networks. The experts were Nuvibit's experienced enterprise cloud and
interviews solution architects. The first topics were strictly technical in nature, focusing on medium-
term technological decisions in the context of the company and the timetable.

This special stage describes the phase in which the author established more organisational
[2] 4. Start structures, such as a professional Scrum or GitHub setup. Furthermore, the time was used
bootstrapping to create a more professional AWS organisational setup with various organisational units,
as described in the AWS Best Practice Guide (Blackham & Elmalak, 2020).

Since the creation of two different Python SDKs (as discussed later in this chapter), more

[3] 4. Start bootstrapping tasks were due at the very end of the given time frame, mostly including
bootstrapping the setup of a privately installable Python package and SDK-specific quality

assurance pipelines and automations.

Iterative and agile implementation began as soon as needed, without waiting for the design
[4] 5. Iterative and process to be completed (i.e. avoiding a waterfall process). Prior to gaining insights from the
agile implementation | design process, time was spent on everything else, such as evaluating technologies, further
bootstrapping, first example codebases, or maintaining the old codebase a bit.

Table 4.1: Special project stages in the effective schedule as shown in
Figure 4.1 and an explanation of the sequencing.

Several key events occurred during the implementation that shaped the future course
of the project and research. This was primarily due to initially unplanned early expert
discussions or uncertainties in the requirements as the user-centred design process was still
being prepared. These key events are overlaid with the effective project plan as shown in

Figure 4.2. The three green key events are the most influential key events.

laC with Kafka and User interview Invention of [External]
Terraform Kinesis insights N/Cl Python SDK
L 4
P 4
L 2 * L 2
Kubernetes and MQTT and Python to Web-native [Internal]
Fargate WebSocket WebAssembly approach Python SDK

Fig. 4.2: The key events overlaid on the effective project schedule as
illustrated in Figure 4.1, with the most influential events coloured green.
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4.2 Key events while building an N/CI

This section discusses the most influential key events as presented in Figure 4.2 and explains
why they occurred as they did and why they were critical to the success of the project. The
following outline is not chronologically presented but begins with the most influential key

events.

4.2.1 User interview insights

The conduct of user interviews was one of the most significant key events. This process
began with developing customer personas based on the sales team’s previous experiences
with real customers and the planned customer segments targeted by C-level management.
In summary, the author does not want to go into too much detail about how the personas
were created and how the process went because the focus is on the results based on the
user interviews—not on the persona creation process itself. The personas are illustrated in
Figure 4.3, and a descriptive overview of the personas can be found in Table 4.2.

@ Alex, the «Business Enabler» & Noel, the «Neuroscientist» {0 Robbie, the «Lab Operator» M Evan, the «App Developer»
Lead, Innovation Management PhD, Neuroscientist Intern, EEG Lab Testing R&D, App Developer

«How can we generate business with innovati... «Does it work and how well does it work?» «How can | apply it and how does it work?» «What can | build with it and what are the limi...

Fig. 4.3: IDUN'’s customer personas (IDUN, n.d.).

People were chosen to represent the personas as accurately as possible. Finally, the
author compiled a list of twenty individuals, of which eight people were chosen and invited
for separate interviews. The interview outline was planned in collaboration with IDUN’s
product manager and an external industry UX expert, Laura Bendixen, who works as a
UX designer at Blick.ch. The author developed the outline based on Laura’s expertise with
previously conducted user interview sessions, which can be found in Appendix C. All
user interviews were conducted remotely and lasted no more than 1.5 hours. During the
interviews, insights were transcribed on Post-Its. People working with BCIs or EEG were
interviewed, as were doctoral students working in research labs, developers who had never
worked with BCIs or had extensive experience building their own BCI software, and business

enablers from companies responsible for BCI-based accessibility.
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Persona Occupation Description

Alex works in a large/small company to bring new innovations and technologies into business
Lead, and product development roadmaps. Alex informs the company’s senior management about new
Alex Innovation innovations and how they may impact future business and strategic initiatives. Alex has a budget
Management to spend but is supported in decision-making by colleagues in R&D, product development and
innovation scouting.

Noel works within large and small organisations to build innovations based on neuroscience and
technologies into future products with an outlook of 5+ years. Noel leads a team or group and
PhD, informs innovation managers such as Alex about new neurotech products and how they may
Neuroscientist | provide new value to customers. Noel has to get approval to start new projects and obtain
budgets for larger initiatives. Noel informs key stakeholders in the organisation and is supported
in decision-making by colleagues in R&D, engineering teams, and innovation scouting.

Robbie works within a lab and research group, possibly in large or small organisations, either
commercial or academic. Robbie often starts from a study protocol developed with or given by
Noel, where a test procedure needs to be followed to have consistent data collection methods
with different test subjects. The work of Robbie supports the assumptions and study endpoints
or goals defined by Noel and neuroscience colleagues. The results may be used in product
Intern, development or to prepare a research report, white paper, publication, etc. Robbie works

EEG Lab Testing | hands-on in the lab, knows how to put on a wet-electrode EEG system, looks at raw signals

and understands if the data is being collected correctly. Robbie debugs test setups when things
are not running correctly, may process results with scripts and is familiar with lab setups like
sleep labs. Robbie can also process the study results, put them together for interpretation
together with Noel and support technical details that may (but are not often) communicated
to Alex.

Evan works within large and small organisations to build engineered solutions based on a
toolkit of code and hardware technologies that form the foundations of future products with
an outlook of 1-5 years. Evan works in a team or as part of a technical group and works with
R&D, smart people like Noel. Evan does not have a background in neuroscience but knows about
App Developer | electrical signals and how to build prototypes and demos. Evan needs the approval to spend
more than 500 CHF on anything. Evan helps Noel to give great presentations to stakeholders
in the organisation but is generally not in strategy discussion. Evan is supported in Scrum

and development tasks by colleagues in the R&D and engineering teams.

Noel

Robbie

Evan

Table 4.2: Descriptive overview of IDUN’s personas.

The questions were non-leading and open-ended, with the primary goal of allowing
interviewees to express themselves, capture their perceptions of the BCI industry, and intro-
duce IDUN’s vision and mission upfront. The goal was to determine what software offerings
a mass-market BCI product would need to provide, such as convincing developers who have
never worked with BCI to include neuro-enhanced features or convincing researchers to
use IDUN'’s NIP in their research. The questions and answers covered different topics. More
technically oriented people inquired about speed, performance, and privacy concerns (i.e.
more production-readiness thinking), whereas researchers inquired about signal quality, the
ability to synchronise with other data streams, and access to raw data (i.e. general applica-
bility thinking). After the last user interview, all Post-Its were compiled, similar insights were
grouped, and the product manager, as well as the author, categorised the most important

insights into a list:

e There are two prominent use cases: (a) using the NIP for research and (b) developing
an end-user-facing app. These are two critical distinctions. Researchers would use the
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NIP to learn about the brain, such as through simple-setup remote experiments or
real-life long-term experiments outside of laboratories. The NIP would, in such a use
case, still be used in production, but not for potentially thousands or millions of users
in an app intended for end users. The company or developer using the NIP would
have physical access to the hardware in the research use case because they would
most likely buy one or more devices and hold them in their repertoire. In contrast,
companies targeting production use cases would ship the devices as white-labelled
hardware through their own or third-party channels. Perhaps one could even say that
because IDUN distributes the device so well, companies and developers do not need
to sell the device themselves but can assume that users already own such headphones.
Companies and developers can then access the brain API such as they can assume
that every end-user has a geolocation API in their smartphone.

Visual demos that are easily accessible for someone owning the hardware are essential
for all personas, most notably an Alex. A visual and simple demo should demonstrate
what one can do with the NIP from IDUN and inspire others to conduct research,
build apps, or enable business and opportunities. These demos need to explain to the
different personas the various benefits; in addition, the end-user should be able to try
out the demos to see the benefits of BCI-enhanced technologies. Individuals such as
Evan should be able to adapt demos with their codes to create their own versions of
them.

The user of the NIP needs to have the lowest level of control possible over the data flow
and classification but also with an option for less technical users to use it and build
things, similar to AWS. AWS itself is only an API to use cloud IT resources, but they also
have the AWS Console app to build everything via a GUI instead only via the API. It
is important that people such as Noel need to know precisely what algorithms were
used or the methodologies for specific classifiers to justify them and integrate them
into their research. They do not, in most instances, actually need raw data access, as
plotting functionality would also be enough; therefore, IDUN’s NIP should have some
functionalities to plot and visualise data.

In order to ease the use of the GUI and the API of the NIP, IDUN needs to provide—in
addition to sufficient documentation—comprehensive libraries for specific environ-
ments that make the unobtrusive implementation of the NIP easier. One such example
would be providing a client-side JavaScript package that is lean and easy to use and

can be integrated into existing apps. Examples for such code integration would also

28



CHAPTER 4. IMPLEMENTATION

need to be provided by IDUN so that people like Evan can easily adjust them and more

quickly start integrating them into their apps or research codebases.

* End-users need control over their data so that other companies accessing the NIP API
cannot collect their data on their servers and do everything they want. Imagine if the
operating system layer of one’s smartphone would not offer an opt-in mechanism for
the cameras; in such a case, third-party developers could install spyware and record
without the user’s permission. When users start to use multiple apps with an NIP
integration, there needs to be some way to control the opt-in and data access without
the app developers having any say in the decisions. There needs to be a technical
limitation from the side of the hardware or the cloud to ensure user privacy and data
security for end-users.

e Researchers are interested in the raw EEG data and the synchronisation possibilities
with specific protocols such as LSL to combine, for example, a heart rate sensor with
the EEG collected from IDUN'’s hardware. The NIP software offering needs to give
enough freedom to combine the data without letting all other collected data flow into
the NIP from IDUN. This means that the NIP should be able to collect, transform, and
most importantly, label data in correlation with other data streams with a local option

to satisfy researchers such as Noel.

These insights were critical in determining that there must be sufficient freedom for raw
data research without releasing raw data into mass-market production environments to
protect end-user privacy. As a result, an opt-in mechanism outside third-party ecosystems
is required. A library is also required that can be implemented in end-user apps and that
connects directly to the hardware without the need to download a companion app from
IDUN itself. This library should allow researchers to access it locally and use their preferred
protocols to synchronise tags and labels with other data streams. Nonetheless, IDUN’s NIP
should once again provide some control over how much raw data can be collected and
should restrict access if the proposed research project or experiment time frame is exceeded.
Furthermore, additional NIP functions should be added to visualise easy-to-use demos for
all personas, as well as a way to use and control the NIP without having to write code—but
with enough flexibility and transparency that there is trust in the system and even advanced

users can work with a visual tool instead of code.
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4.2.2 Invention of N/CI

The insights from the user interviews, combined with the ongoing research on B/CI and
remote BCI presented in the introduction, were key to realising the novelty of this new
interdisciplinary approach to developing a production-grade and mass-market BCI software
system running in the cloud and targeting the general population via general applicability. It
should be noted that it was realised only in the seventh sprint that such a system had not yet
been defined in research. The findings from the user interviews lay primarily in the direction
of the N/CI definition, while the literature review was primarily focused on distinguishing
between existing research and definitions.

Once a first draft of the definition was written down, the research and separation of work
packages could be more easily tackled and explored due to a better understanding of what
was new and unexplored. By the end of the seventh sprint, the author’s goal was to further
develop the definition and motivation in the form of a written appendix as a byproduct of
the main work of this thesis. Appendix A presents the output of this key event.

4.2.3 Web-native approach

Prior to Sprint 6, the author had already developed some ideas about future architecture
roadmaps, as shown in Figure 4.4.

High latency Mid latency Low latency Ultra low latency

mid/late 2022 late 2022/early 2023 late 2023 2025
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Fig. 4.4: Original architecture roadmap of IDUN’s NIP going from a high
latency system in mid/late 2022 to an ultra-low latency system in 2025.

The initial architecture roadmap was part of the project’s initial phase to define the key
technical requirements and constraints and show how the NIP software stack would move

from a high latency system to a low latency system. Nonetheless, one aspect of this old
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architecture roadmap was that IDUN would continue to maintain and develop the physical
hardware network bridge and eventually port it to end-user devices as a companion app.
However, just before Sprint 6, the author came upon the work of Flynn and Brewster of the
BCI platform called Brains at Play and its use of Web Bluetooth (Brains@Play, n.d.), which
is a new and experimental API for browsers that allows websites to connect directly to a
Bluetooth Low Energy (BLE) device. The Brains at Play platform is a hardware-independent
BCI software platform with similar goals to Neuromore Studio. The main difference is
that they offer their app as a web app; therefore, everything runs in the browser without
downloading additional software. The author contacted Garrett Flynn, one of the founding
partners, and discussed the implications and findings of using Web Bluetooth EEG data, such
as that from IDUN’s sensor. (Later, Garrett Flynn was also invited to the user interviews as
one of the persona representatives for Evan.) Garrett Flynn’s findings were entirely positive,
and he strongly recommended working with the API as it makes deploying a BCI platform
much more effortless than deploying applications for any operating system, especially any
BLE interface. However, one of the main disadvantages of Web Bluetooth was browser
compatibility, as shown in Figure 4.5.

Web Bluetooth =. ‘ % of all users

Allows web sites to communicate over GATT with nearby user-
selected Bluetooth devices in a secure and privacy-preserving
way.
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Fig. 4.5: Browser compatibility overview of Web Bluetooth (Caniuse, n.d.).

Nevertheless, IDUN is building a product that aims for an extensive user base in 2-3
years, as can be seen in their roadmap in Figure 3.4. This means that browser compatibility
could come and go over the coming years once browser manufacturers start implementing
the API. One problem, however, is that the Web Bluetooth API cannot be run in a service
worker, making it impossible to run in the background when the device has its screen locked
or another app is currently opened on a smartphone (WebBluetoothCG, 2018). This is

an intermediate problem, even for the upcoming smaller and specific user groups with
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the current personas. Among a variety of technologies under investigation, the author
identified Capacitor, a JavaScript library, as a suitable candidate for the current use case. It
essentially can compile and run web apps as native apps with the ability to access native
APIs (Ionic, n.d.-a) such as the camera or—especially important for IDUN—the BLE API
(Capacitor-Community, 2022). Developers can use Capacitor to write BLE code with the
same interface as Web Bluetooth, compile the code, and run the applications on native
devices with background functionality.

After further research, as shown in more detail in Appendix G, almost the entire Sprint 6
was spent evaluating the possibility of using Web Bluetooth for IDUN’s NIP. At the end of
the sprint, a working PoC SPA was created with an iOS and Android build that fulfilled all
needs in terms of developer experience, the latency of the EEG signal from the device to a
visualisation plot, and the power consumption of lower-end smartphones. Following this,
the author proposed to change the original architecture roadmap as depicted in Figure 4.4,
skipping the first two steps and going directly to step 3 in order to accelerate the development
pace and enable greater market maturity for IDUN’s NIP as soon as the end of 2022.

The use of a web app, combined with the use of modern APIs and the compilation
of the app for mobile applications when compatibility is not guaranteed, is called a web-
native approach (Ionic, n.d.-b). In addition to the time saved by not having to develop
platform-specific apps but using a single code base instead, this approach also has the
advantage that a library that abstracts the logic of connecting a BLE device such as the
IDUN device can already be created into a single installable unit in the form of an NPM
package. This library can be implemented in end-user apps and connects directly to the
hardware without the need to download a companion app from IDUN itself. This is one of
the solutions to the findings from the user interviews. The time saved with a web-native
approach allowed IDUN to already focus on creating such a library and using it in their
web app, which would be the Console or GUI as in the AWS example, allowing ‘dogfooding’
for IDUN’s own software offerings and eliminating preliminary issues before releasing the
library to the public (Techopedia, 2016).

4.2.4 Further key events

Further key events of the case study depicted in Figure 4.2 are described in more detail in

Appendix D.
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Chapter 5
Results and summary

This chapter presents the concrete results, a concise summary of the project in the form of
key aspects of an N/CI, and an example architecture—all considered in light of the initial

goals and objectives.

5.1 Results

This section discusses the final results of the implementation chapter. The author begins
by discussing the most important key aspects and insights of an N/CI for the software
components of the NIP for IDUN before delving deeper into architectural aspects of the
technical implementation.

5.1.1 Key aspects of an N/CI

Previously, the author coined the term N/CI defined by the three-dimensional axes spanned
by production-readiness, general applicability, and unobtrusiveness (see Figure 2.10). How-
ever, Figure 2.10 does not address what is required to develop a holistic technological
definition. Subsequently, the following sections discuss some architectural, ethical, and
privacy aspects of the model N/CI built for IDUN Technologies.

Stream-based events

One of the most critical technical aspects of an N/ClI is the stream-oriented and event-driven
architecture. An event-driven architecture is typical in modern applications, built with
microservices and using events to trigger and communicate between decoupled services
(Amazon Web Services, n.d.-c). The stream-oriented aspect describes the main events
occurring in such a system. Neural data recorded from IDUN’s sensors is being streamed
from the end-user’s devices and processed on the cloud to transform and classify the raw
data to generate applicable and intelligible output. There are two main differences between
the stream types when building an N/CI:

1. Synchronous streams for active and real-time BCI.

2. Asynchronous streams for passive, reactive BCI.
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Either a user streams neural data from the device to the cloud in order to generate action-
able insights—such as controlling an object in a game—or the user tries to improve audio
amplification based on where they look. Such use cases necessitate real-time classification
within an acceptable latency. (Latency will be discussed more in the following section).

The other component occurs when an asynchronous stream is used in place of a syn-
chronous stream. For example, while asleep, the user does not require real-time insights
from their sleep. When they wake up, the system must stop the stream, classify it, and dis-
play the sleep stages. These various aspects are crucial because the data stream is required
to undergo some sort of data transformation, such as the calculation of frequency band
power (typically done in EEG signal processing). Therefore, there needs to be a specific time
window (epoch) to calculate a plausible output. To determine the proportion of, say, alpha
waves (which typically have frequencies between 8 and 13 Hz) in a user’s neural data, one
must decompose the raw EEG signal into frequency components via a fast Fourier transform

(FFT). An example of FFT transformed data is visualised in Figure 5.1.

Intensity 3 beats / second

5
Frequency

Fig. 5.1: Illustration of how FFT works (3Blue1Brown, 2018)

A given frequency in the time series is used to calculate the cycles to extract the originally
occurring frequency signal based on the epoch length. As a result, there is an epoch-based
classification of neural data, on the one hand, in which the classifier makes predictions
based on an epoch-by-epoch sequence. On the other hand, there is a per-sample shift
classification in which the prediction occurs within a buffer that stores a fixed length of

historical samples and moves sample by sample following a first-in-first-out (FIFO) principle.
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The latency of the per-sample classification is 0.004 seconds (due to the 250 samples of the
IDUN sensor), whereas a per-epoch classification initially has a latency of 1 second due
to filling up the buffer for FFT. Figure 5.2 visualises the differences between these stream
transformation types.

Time series data
(i.e. entire stream)

4 A

Per-sample

Time
\c\ shift

Microvolt

Epoch 1 Epoch 2 |

Epoch-by-epoch classification Sample-by-sample classification

Fig. 5.2: Illustration of two real-time classifications for a BCI application.

Critical and non-critical applications

The discussion of stream-based events leads us to the aspect of critical and non-critical
use cases. In a critical use case such as microsleep detection while driving, one needs a
synchronous neural stream with a low-latency classification of whether the driver is currently
awake, asleep, or about to fall asleep. In such use cases, the classification needs to be as fast
as possible, such as in a sample-by-sample classification; what is critical, therefore, is how
fast the connection between the measuring sensor and the classifier is. In highly critical use
cases where a user’s life may depend on it, the classification would need to be done without
an active internet connection so that the classification model runs on the hardware itself
and not in the cloud. The reason for this is to allow interventions within milliseconds (e.g.
in the form of a loud sound to warn or wake up the driver) as a few moments can make the
difference between life and death.
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Less critical applications can fall back on online modes and run classifiers over an
active internet connection in the cloud. To reduce latency, edge cloud computing could be
introduced, whereby business logic executed in the cloud is brought geographically closer to
the end user via edge locations (Nomios, n.d.). The aspect of edge-cloud or edge-computing
in general is a topic not covered under the aspects of an N/CI in this thesis since it was not
yet a requirement to build a critical system at IDUN.

However, the distinction between critical and non-critical streams can be made not only
for synchronous streams (as described in the preceding examples), but also for asynchronous
streams, particularly in the context of research. In general, research represented by, say,
IDUN’s persona Noel does not necessitate synchronous streams or real-time classifications
but rather the most reliable possible acquisition of neural data from test subjects. The
critical aspect in such a use case can also be much higher than when recording neural data
during sleep in consumer-oriented applications. For example, if the device goes offline or
the Bluetooth connection is lost, the device must cache the data locally and be able to restore
and send it once the device is back in range or a sufficiently stable internet connection is
restored. The author suggests having a fallback system in the form of buffering for each
data stream if neural data becomes corrupted or misordered due to timestamp mismatches
in sending the data over the internet (meaning that a particular EEG sample could arrive
earlier than another sample that would have occurred earlier in the time series). Therefore,

a sorting algorithm would need to run over the arriving samples as shown in Figure 5.3.

End-user device Cloud

\[-\ Sorting algorithm

Internet
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Sample A0603
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Sample A001
Sample A002
Sample A003
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Fig. 5.3: Mechanism of sorting samples as they might arrive in the wrong
order on the cloud via the internet.
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Fortunately, AWS Kinesis, a streaming service used for IDUN’s cloud (more information
in Appendix D), already comes built-in with a guaranteed order mechanism via sequence
numbers to solve this problem (Amazon Web Services, n.d.-a). The aspect of locally caching
is also important when the device is offline. The software periodically sends a health check
request to the cloud via WebSocket in a given interval and buffers all data on the interval.

If no promise returns after a certain threshold, the device (or SDK on the end-user device)
starts to buffer, as shown in Figure 5.4.
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Fig. 5.4: Buffering mechanism on the device (i.e. end-user device such as
a smartphone) when there is no internet connection.

Opt-in and encryption

Because IDUN develops an unobtrusive library (in the form of an SDK, as detailed in Ap-
pendix D) that can be easily implemented in existing software such as web apps or mobile
apps, the developers of these apps have actual access to the hardware and initiate the Blue-
tooth connection between the sensor and the end-user device. IDUN must encrypt the
recorded data on the hardware before it reaches the third-party app to protect user privacy
and the security of end-user neural data.

This is a critical step in preventing third-party providers from collecting extensive data
and classifying insights from users they may not want. IDUN securely decrypts the data
in its cloud using the private key in the asynchronous encryption example. Third-party
developers can thus only access data that the user has authorised. The duration of data
storage, the type and level of detail of certain classifications of their neural data, and sharing
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Fig. 5.5: Wireframes for the opt-in mechanism. Starting with the device
connection via BLE, the device registration (or login) and then opt-in for
app-specific options.

and usage analysis are all opt-in options. Figure 5.5 depicts how such an opt-in mechanism
might appear as a GUI in a third-party mobile app. A more detailed version can be found in
Appendix E.

Unencrypted raw data should never be accessible to third parties; moreover, it poses
some technical challenges. To visualise and display the raw time series of IDUN’s EEG
sensors, the individual display images would have to be rendered on the server and streamed
to the client as a video stream. Another difficulty is synchronising and organising the rotation
of public and private keys, which must be done without interference from third parties.
Asynchronous encryption, together with envelope encryption, is a production-ready and
battle-tested method to solve this issue. In envelope encryption, the data key (public key) is
itself also encrypted with the private key (Cloud, n.d.).

Graph data access

Aside from the stream-oriented, event-driven nature of an N/CI, the aspect of data storage
is critical. It is important to note that, due to the high frequency of the EEG data, it became
apparent during the implementation phase that storing the neural data in a database is
not an efficient method. Storing it as a static file on an object storage system such as AWS

S3 in a text-based file format such as comma-separated values (CSV) files seemed more
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appropriate and scalable since it is too much granular data for a conventional database.
This is similar to how other static data such as images get stored on object storage, with only
the URL to the object being stored in a database rather than storing the entirety of the bytes
from the image inside the database (Datanamic, n.d.).

In addition to storing the neural data in the given data structure, it is essential to note
that other sensor data, such as inertial measurement unit (IMU) data, which is also collected
by the IDUN hardware to track the subject’s three-dimensional location, rotation, and
movement, is also stored alongside and synchronised with the neural data. In addition to
the data based on the two time series, EEG and IMU, IDUN collects meta-information such
as classified versions of the data (e.g. eye movement data), which must also be synchronised
with the raw data streams. The more classification and post-processing logic applied to raw
data streams, the more metadata and relationships must be linked to the original file, as
Figure 5.6 shows.
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Fig. 5.6: Data model in the form of a graph with the current setup and
scope.

A graph database is the most natural way to store this large number of relationships
between various stored files (entities). Relationships are treated as first-class citizens in
graph databases, and most of their value is derived from these relationships. In graph
databases, nodes are used to store data entities, while edges are used to store relationships

between entities (Amazon Web Services, n.d.-e). Due to time limitations, the author did not
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implement a graph database but chose a relational database such as AWS Aurora since the
current amount of data relationships is still manageable. To quickly swap the underlying
database technology without rewriting a significant portion of the business logic, the author
intends to use an object-relational mapping (ORM) tool such as Prisma to treat relational

data models via a graph-like schema (Prisma, n.d.).

5.1.2 Example architecture of an N/CI

Based on the key aspects of the N/CI for IDUN’s NIP mentioned in the previous section, the

author presents as one of the main results the cloud architecture depicted in Figure 5.7.
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Fig. 5.7: Implementation architecture of IDUN’s N/CI.

The architecture does not detail the SDK and demo parts described in the user interview
insights in subsection 4.2.1; rather, the goal is only to explore the cloud aspects of an N/CI
and its core architectural components. The diagram contains some patterns that have a
specific rationale. The following list describes the different patterns and sections of the
mapped architecture and the associated technical descriptions. It is important to note that
some parts are not discussed as they are not part of this work, such as the networking aspect
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of the cloud setup—for example, virtual private clouds (VPCs), network address translation

services (NATs), and security groups and their traffic rules.
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Fig. 5.8: The Fargate cluster of the example architecture for IDUN’s N/CI.

* Figure 5.8 shows the Fargate cluster of the IDUN cloud setup. There are two primary
services: one for business logic applied to synchronous streams and one for asyn-
chronous streams. The distinction can usually be described as the left service being a
system of record and the right service being a derived data system (Kleppmann, 2017).
This separation describes that the system of record processes the raw data directly
and, in this case, in a real-time stream, whereas the derived data system generates
other data from the raw data without a real-time aspect. There is a certain redundancy,
as can be seen, for example, with the HEOG! container (a classifier that recognises the
direction a user is looking). This is due to the aspect of critical and non-critical men-
tioned earlier. The HEOG container for synchronous tasks runs on a more powerful
machine than, for example, the asynchronous container; consequently, their hardware
task descriptions differ in available computing power, as the asynchronous neural

data processing is not as critical in terms of latency as the synchronous containers.

Another aspect is that the asynchronous service also contains batch processing con-
tainers for sleep or general quality classifiers that do not need a stream-based aspect.
These classifiers would run on demand or as batch processing events to produce other
transformed data not represented as a time series, such as neural data or the other
stream-based classifiers. For more information on the decision to use a Fargate cluster,
see Appendix D.

Another important aspect is the decrypted container, which uses the private keys of
the key pair to encrypt the data on the hardware and then decrypt it within the services
to process and handle the actual and encrypted raw data. When the data is stored in
S3 buckets, it is encrypted both in flight and at rest.

LHEOG in this context, which is an acronym for horizontal electrooculogram, and describes the electrical
signal recorded to detect the horizontal eye movement.
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Kinesis S3 EventBridge Lambda Aurora
Firehose Stream data New item trigger Update data Data graph
graph

Fig. 5.9: The initial data flow in IDUN’s N/CI.

e Figure 5.9 describes the initial data flow of streamed neural data. The data is sent
via the WebSocket protocol to Kinesis, a data ingestion system for data streams. A
complimentary service for Kinesis, called Kinesis Firehose, is then used to aggregate
the data and store the streamed data as a CSV in an object store—in this case, S3.
As more data is streamed through Kinesis, Firehose appends the newly captured
data to the CSV file already created on S3. Once the stream is stopped, the CSV file
on S3 is marked as complete, which triggers an event in the EventBridge service,
which then triggers a Lambda function to add the newly captured file and its meta-
information (such as size and identifier) to the data graph database—in this case, the
Aurora database service. This event-driven aspect allows the Fargate cluster not to be
disturbed and the focus to remain on the streaming aspect with the creation of the
data graph being event-driven. In contrast to creating another service in the Fargate
cluster, a serverless function in Lambda is not always used to run this business logic
because they are event-driven and per-request; thus, they can be cold rather than hot
functions?, which is what classification logic on the Fargate cluster should always be

as people can stream EEG data continuously for hours.

API Gateway Kinesis Data Fargate Kinesis Data
WebSocket Raw Streams Cluster Proc. Streams

Fig. 5.10: The real-time data flow in IDUN’s N/CI.

* Figure 5.10, compared to the previous bullet point, shows the real-time data flow. It
describes that neural data is sent via the WebSocket protocol and then ends up in the

2Hot and cold functions describe the underlying state of the infrastructure on which business logic is
executed. The serverless aspect of cloud computing functions, such as Lambda, can be ‘turned off” as soon as
the business logic is not needed at the moment and is therefore described as cold.
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ingestion service of Kinesis. Kinesis stores the data stream and the new incoming data
stateful and leaves it to the Fargate cluster to copy and transform the data according to
the desired classification, such as HEOG or FFT. Once the Fargate cluster returns the
processed or transformed data, it is sent to another Kinesis stream, which then returns
the data via the same WebSocket API gateway. As a client, one would only subscribe
to one API WebSocket API endpoint in this architecture, although the streams are
processed separately with two ingestion services (the Kinesis instances Raw Streams
and Proc. Streams).

DynamoDB Lambda S3 S3 Glacier
Storage opt-ins CRON Jobs Encrypted Low access rule
raw streams

Fig. 5.11: CRON jobs example architecture in IDUN’s N/CI.

e Figure 5.11 describes the CRON? job processes to process and dictate specific opt-ins
from users regarding long-term data storage. For example, if the user has declared that
IDUN should not store sleep data in the cloud for longer than four weeks, business
logic must check which files are older than four weeks and then delete them. This task
of repeatedly checking opt-ins stored in a DynamoDB database can also be handled
by a Lambda. DynamoDB is a NoSQL database perfect for data whose schema is
challenging to track due to the complexity of opt-in variations. This business logic can
happen four times a day, for example, and has no real-time impact on end users, so
this is a good use case for using business logic that can be cold.

Another aspect is that the CRON job Lambda defines old files, for example, and
places them in cold storage on S3 Glacier. One can transfer old and infrequently used
data from warm to cold storage in seconds while the data remains discoverable and
searchable (Sayed & Shah, 2021). This is a process of removing less frequently used
or requested data from the N/CI’s computational space, which primarily saves cloud
costs.

3CRON comes from the command line utility that is a job scheduler on Unix-like operating systems to
execute tasks repeatedly without human intervention.
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S3
All buckets

Aurora
Data graph

API Gateway DynamoDB Lambda Fargate
Storage opt-ins Data API Cluster

Fig. 5.12: API access part of the architecture of IDUN’s N/CI.

* Figure 5.12 shows the API access part of the example architecture for IDUN’s N/CI.
The author uses the API Gateway service here—not the WebSocket version, but the
standard Hypertext Transfer Protocol (HTTP) version—as there is no real-time and
stream-based aspect to this API. Based on the opt-in of the users, which is accessible
via the API for third-party developers, a Lambda accesses the Aurora database, which
contains the references to all data stored in S3 buckets within the cloud. For example,
if certain data is not available (e.g. if the device is only streaming raw data for sleep
classification, but the developers want to get the FFT version of the file), then the
data API Lambda sends a request to the Fargate cluster to process the data via a batch
processing service, as shown in Figure 5.8. The updated data is then stored in an S3
bucket directly by Fargate; this triggers another event in EventBridge, as shown in
Figure 5.9, which then updates the data graph. Once the data graph of the specific
transformed version of the file has changed, it can be returned as an HTTP response

via the API Gateway service.

5.2 Summary

Within this thesis, the author has provided the foundational work on the development
and definition of an N/CI. In addition, the author has addressed the challenges and the
limitations surrounding the implementation of a model N/CI at IDUN. Working in a fast-
moving startup such as IDUN made it challenging to work on the project and write the
written part; nevertheless, the author is satisfied with the result as described in this thesis.
The author learned many things, ranging from fundamental theoretical neuroscience to

cloud computing.
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This thesis first introduced the topics and some of the essential terms and their back-
grounds in section 1.1, drawing conclusions from the current state of research that have
framed the aims and objectives of the author. The assumption that the implementation
of an N/ClI is feasible with contemporary technologies has been demonstrated, but there
are still unknown shortcomings that need to be identified. Nevertheless, the aim was to
provide the reader with an overview and context for the newly introduced definition of
N/CI and the lessons learned during its practical implementation at IDUN. The context and
motivation for creating an N/CI, as described as the first item in the list of objectives, were
derived in Chapter 2 and explained in more detail in Appendix A. Compared to existing
systems and research, the clear definition, distinction, and advantages of an N/CI were also
described in more detail in Appendix A. The identification and definition of key aspects to
realise an N/CI to demonstrate general applicability for BCI software were shown using key
events in section 4.1 and subsection 5.1.1. The implementation details of an example archi-
tecture of an N/CI, which was the fourth and final objective of this thesis, were presented
in subsection 5.1.2, leading to a summary of all the goals and objectives achieved in this

project.

5.2.1 Reflection

Creating an example N/CI in the industry as part of IDUN Technologies’ NIP was a complex
undertaking with many moving parts and imponderables. Moreover, since no other person
is publicly building an N/CI or anything that would fall under the definition of an N/CI,
the author could not count on experienced engineers who have built such a system for a
mass-market BCI before. The most significant problem in the context of this work was the
sheer scale of the project, as reflected in the length of the thesis. In hindsight, it might have
been better to focus more precisely on one deliverable rather than having four objectives
and primary goals. The author should also have defined more clear criteria for what the
work packages should have been and what defines them as ‘finished’. The work was more
theoretical than initially anticipated and focused on the definition and key aspects of an
N/CI, ultimately a byproduct of the original work.

5.2.2 Outlook

The author intends to publish certain parts of this work in the form of a research paper. An
exciting aspect of this is the definition and motivation behind creating the new discipline

in which neural/cloud interfacing resides. In addition, the author will continue to work at
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IDUN Technologies to develop their N/CI further and document the upcoming technological
challenges in the form of blog posts.

One important change that will occur once IDUN sells its device to the general public
is that the currently proposed architecture, as shown in subsection 5.1.2, will become a
localised system—that is, the cloud data centre is in one geographical location (in the case
of IDUN, this is EU-Central-1 in Frankfurt). This aspect could be worked on as part of a
master’s thesis. For future research, it could be fascinating to explore a distributed cloud
system as scaling around the world would require a distributed system to reduce latency
and fault tolerance.

5.2.3 Conclusion

An N/Cl is an essential and new definition of a discipline that combines cloud computing
and BCI software. This new discipline brings many new challenges, such as making a neural
interface software system ready for production, which invites numerous privacy and ethical
challenges. Building an N/CI along the lines of the definition explored by the author was an
exciting and highly challenging endeavour, but one that led to many valuable insights and
findings. There is a need for further research into performance and latency aspects, as well
as the totality of machine learning models running in production, which was not mentioned
and was not the focus of this thesis. Nevertheless, many findings from user interviews, group
discussions, and expert interviews were presented and visualised along with the holistic
model architecture, which can be used further to develop better and more robust N/CI
architectures through future case studies. Following the publication of a shorter and more
scientifically sound version of this thesis, as mentioned in subsection 5.2.2, the author hopes
to promote and establish the term and discipline of N/CI and the future behind it from the
perspective of interacting directly with brains and better understanding our brains—for the
benefit of humanity.
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Appendix A

Definition and motivation of an N/CI

This appendix discusses the definition, need, and differentiation of an N/CI and the paradigm

shifts associated with it when discussing BCI software.

BCI software on the cloud

As can be seen in Figure A.1, the three software layers of a BCI-component illustration, as
pictured in Figure 2.7, are highlighted. This is due to the fact that these components are not

bound to a physical interface such as a cable or Bluetooth.

Classification

Processing

Fig. A.1: Highlighted software components as previously shown in
Figure 2.7 of a BCI that could be moved to the cloud.

Running software on the cloud means that developers or companies can access pro-
visioned information technology (IT) infrastructure through the internet, usually with a
pay-as-you-go pricing model (Amazon Web Services, n.d.-e). The development speed of
software applications can drastically improve since software developers can only focus on
software rather than incorporating the hardware and network aspect of setting up their
server farms, therefore abstracting away the hardware. What started with simple computers
that can be rented in a remote server farm such as with Amazon Web Services (AWS) and
Elastic Compute Cloud (EC2; Barr, 2006) ended up being a diverse offering from cloud

providers with various abstraction levels, as shown in Table A.1.
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Type Description

[aa$S gives access to data storage space, virtual or dedicated
Infrastructure as | computers, and network services. The greatest degree of

a Service (laaS) flexibility and administrative control over your IT resources
are provided by utilising IaaS.

PaaS lets developers concentrate on developing and
Platform as a managing their code rather than worrying about the
Service (PaaS) underlying infrastructure (often hardware and operating
systems). An example is Kubernetes.

SaaS provides a whole product that is run and controlled
by the service provider. The phrase Saa$ often refers to
end-user apps (e.g. web-based email). Developers don’t
have to be concerned about how the service is handled

or whether the underlying infrastructure is maintained.

Software as a
Service (SaaS)

Table A.1: The three abstraction levels and types of cloud computing
(Amazon Web Services, n.d.-e).

Most businesses are anticipated to embrace a cloud-first strategy by 2025, according to
Milind Govekar, vice president of IT research and consultancy company Gartner, and will
not be able to fully implement their digital plans without the usage of cloud-native architec-
tures and technologies (Gartner, n.d.-b). The impact and importance of cloud computing
cannot be underestimated, and its success is also reflected in the annual spending on cloud
computing resources, estimated at €474 billion in 2022 (Gartner, n.d.-b). Cloud computing
is such an extensive and complex topic that it could quickly fill entire books. The author
categorises three broad but essential points that certainly play a vital role in BCI software: (a)
dedicated and deterministic environments, which means that an environment of a software
programme always stays the same independent of the end-users hardware; (b) elastic and
high-performance availability, which refers to cloud computers that have an on-demand
and adjustable high-performance; and (c) provided services for speed, which refers to the
concept of pre-made and dedicated software written primarily for the cloud and specific
use cases. The following list goes into more detail about these topics in the context of BCI

software:

1. Dedicated and deterministic environments: Running code for BCIs on different end-
user platforms, such as Windows or Android, can have drawbacks because each device
has its processor, graphics card, operating system version, and drivers. This can make

developing software that requires stable and good performance—such as neural data
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processing pipelines—time-consuming and difficult to maintain, as developers must
keep track of every factor of the end-user devices. This is fine for BCIs that are not
intended for the general public, such as specially designed BClIs for people with, say,
locked-in syndrome; but for the general public, a vast amount of different end-user
devices could come into play. When code runs on a dedicated machine, such as a
cloud computer with clearly defined hardware and operating system specifications, it

becomes less error-prone and more deterministic.

. Elastic and high-performance availability: Because the cloud usually runs as an
as-needed model, the initial purchase cost of computer hardware is split and shared
across usage. Developers have access to tremendous computing power that would
not be easily afforded if purchased independently. As a result, when developing a
computationally intensive algorithm, developers can use high-performance central
processing units (CPUs) and graphics processing units (GPUs) to complete tasks
much faster than consumer hardware on end-user devices. Performance can also be
increased as needed, for example, to handle computationally heavier tasks that are
not used as frequently or to handle more requests when the demand for the software
increases due to an increase in the number of users—a process known as elasticity
(Gartner, n.d.-a). Furthermore, the cloud provides far more storage capacity than

end-user devices.

. Provided services for speed: The vast majority of cloud providers are providing more
specialised services as we move closer to PaaS. Provisioned database servers, for
example, exist solely to serve as a database; the underlying hardware is therefore
optimised for the database software running on it. Hundreds of cloud computing
services are available, including 200 from AWS alone (Amazon Web Services, n.d.-
e)—all of which address specific use cases. This is extremely useful when it comes to
cloud-based BCI software. One example is the live streaming of brain data, which is
discussed in greater detail in Chapter 4. The services accelerate development speed
by eliminating the need for teams to reinvent the wheel repeatedly, in addition to also
providing out-of-the-box scalability due to built-in elasticity and the concept of fully
abstracted hardware via the serverless model (RedHat, 2022).

An N/CI utilises cloud computing by running certain software components of a BCI

system in the cloud with the benefits previously mentioned. Multiple BCIs can communicate

with each other or with other software or hardware over the internet, enabling remote

human-computer interaction. Figure A.2 depicts how two or more BClIs can interface with

one another using cloud software. The red arrows represent the typical local BCI. The blue
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arrow depicts how BCI B can execute business logic via the cloud over the internet, enabling
digital and physical interactions with high performance. The green arrow depicts how BCI
A can communicate via an N/CI with BCI B even if they are not in the same geographical

location.

Neural/cloud interface

Cloud software

: B -
v
.MN'M BCI A .MMM
ab . ab
‘ Digital/physical ’ BCI B ‘ Digital/physical ’
interaction interaction
J "

Fig. A.2: An N/Cl is the connection between multiple BCIs.

Distinction between existing research

The concept of running BCI software components remotely and on the cloud is not novel, as
research into the concept known as asynchronous BCI (An et al., 2016) or internet-based
BCI (Lampe et al., 2014) has been ongoing for some time. However, when one looks at
the more recent research from Zhang et al. (2018) on their cloud-based deep learning
framework to enable what they describe as Human-Thing Cognitive Interactivity, one sees a
strong emphasis on algorithms and machine learning but less on cloud architecture and
mass-market-readiness (Zhang et al., 2018). They address the latency and size of EEG
samples sent in near-real-time to a server, as well as the corresponding calculation, but
there are no more details in regard to the proposed and very simplified architecture chart’s
components or effective cloud architecture, all of which factor into the author’s aim to
develop an N/CI. Another related and even more recent paper by Ahamad (2022) looks at
the system architecture of a BCI for the Internet of Things (IoT), but this time from the
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perspective of algorithms optimised for time series data such as EEG, but still with no
mention of the effective cloud architecture of such a system (Ahamad, 2022).

The author of this thesis introduces the concept of three-dimensionality for the definition
of an N/CI based on the previously mentioned topics and research that touch on the issues of
this thesis, which are essential to achieve general applicability for BCIs from the perspective

of the software system for the actual implementation of such a system.

Requirements of an N/CI

The term N/CI positions itself as a software system in the intersection that can undoubtedly
be defined as production-grade rather than in the PoC stage, unobtrusive implementation
rather than obtrusive software, and general-purpose applicability rather than made just
for a specific use case. Figure A.3 illustrates the position of an N/CI within the mentioned

properties. Subsequently, Table A.2 summarises the definitions as described in this thesis.

Unobtrusive N/CI
A 4

Production

Specific 4 » General-purpose

v

PoC Obtrusive

Fig. A.3: Visualisation of the three-dimensionality of the term
neural/cloud interface with its three axes and differentiation of six terms.
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Axis labelling

Description

Production

As previously stated, this is the range in which a software system is deemed ready for production.

Because the definition is vague, it is difficult to identify specific requirements that must be met for

a system to be considered production-ready. However, for an N/CI, this means runningin a

production environment, for example, in a cloud, on a real-world end-user server rather than, for example,
in a proof-of-concept environment such as in a lab.

Unobtrusive

As previously stated, an unobtrusive software system is one in which the end-user does not need
to understand the underlying architecture and requirements in order to use the software or even
know certain parts of the software system. In the reverse case, users need to install special
packages or download additional companion apps to make an N/CI work on their computer

or smartphone is not the aim of the author’s definition of an N/CIL

General-purpose

A general-purpose software system is one that can be used for a variety of functions. As an
example, consider AWS. It is general-purpose, which means that developers can create

cloud software on AWS that can be either a financial application or a backend for a mobile
game; there are no specific use cases. This means that an N/CI, unlike the NextMind BCI

or the Muse headband, should provide general-purpose functionality rather than specific use
cases, i.e. it is not limited to a specific set of functions.

PoC

A BCI software system that serves as a proof of concept cannot be considered N/CI because
itis not intended for production and thus all the effort required to create a production system,
such as quality assurance with unit or end-to-end testing, is unnecessary. A PoC system does
not usually run in a production environment, as the goal is, for example, to test a specific
functionality of a use case rather than to deliver the software to end-users.

Obtrusive

An obtrusive BCI system, for example, may still be production-ready if it targets specific use cases
while remaining unobtrusive because neuroscientists or developers, for example, expect to have
access to the underlying software architecture or technical requirements and thus do not want to
abstract from it. If it is obtrusive software, such as OpenBCI, this usually means building the
production-ready part on top of it is necessary, which does not fit the author’s proposed definition
of an N/CI.

Specific

If a BCI system is only used for one use case, such as Muse for sleep and meditation, companies

or developers who want to offer a different use case, such as a mind-controlled keyboard with a
P300 system will have to reverse engineer Muse’s EEG output or use a different BCI hardware

that is less specific and closed, and then build their own production-ready and unobtrusive software
on top of it.

Table A.2: Axes label descriptions of the three-dimensionality for the

definition of an N/CI as shown in Figure A.3.

With an unobtrusive form factor like the one developed by IDUN Technologies, a signifi-

cant hardware barrier to becoming a mass-market BCI has already been tackled. Next to the

hardware, IDUN intends to provide a business-to-business (B2B) software platform, allow-

ing third-party developers to create software on top of IDUN’s offerings through a universal

brain application programming interface (API). Because they allow others to consume this

API in end-user-facing apps, it must be production-ready and able to be integrated unob-

trusively. IDUN’s hardware and software aim to be general-purpose rather than specific,

allowing others to build any BCI-enhanced app (IDUN, n.d.).

All IDUN’s requirements systematise one of the first BCIs aimed at the general public,

which satisfies the broad definition of an N/CI. The fundamental motivation of the author is

to standardise collaboration and research on this novel and interdisciplinary field of BCI

software and cloud computing.
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Flaws and bugs previous system

This appendix lists the flaws and bugs discovered during the author’s work on the original

IDUN Technologies PoC software system.

AWS Amplify is great for frontend developers who want to build simple backends
with CRUD! operations, but it is not intended for anything custom-made, such as the
streaming-focused aspect of EEG data. Therefore, AWS Amplify must be abandoned

as soon as possible, or the project will be built with the wrong tools and foundations.

The network bridge was a Raspberry Pi 4 Model B running Python code which, after
some analysis, turned out to be the primary source of most of the bugs due to limits in

computational power and ARM-based CPU architecture.

The cloud’s heartbeat functionality was missing, which meant that the cloud knew
nothing about the hardware devices, and simply assumed that data would flow in as

soon as the start command was sent to the device, creating a ‘happy path’ scenario.

The cloud infrastructure was automatically provisioned by AWS Amplify, which uses
AWS CloudFormation in its core. CloudFormation is an infrastructure as code (IaC)
tool, that runs inside AWS CodePipeline, AWS’s continuous integration service. This
tool stack made everything coupled to specific AWS services where the technical
decision to use them was not made based on reasoning but was based on Amplify’s

creators to utilise them.

All software in the cloud was built using the AWS Console (the AWS GUI). Therefore,
no current state in the form of IaC reflected the current infrastructure, which made
it difficult to reproduce the cloud in different environments, for example, such as

preventing a blast radius if something went wrong.

The data was streamed via the messaging and queuing middleware telemetry transport
(MQTT) protocol developed by IBM in the late 1990s (Yuan, 2017). MQTT is a publish-
and-subscribe protocol commonly used for IoT devices that regularly send telemetry
data. The purpose of MQTT was not to send high-frequency EEG data in real-time

but rather to minimise network bandwidth (MQTT, n.d.). Therefore, there was also a

ICRUD is an acronym describing general operations of a backend system: create, read, update and delete.
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need to rethink this technological decision based on the nature of IDUN’s EEG sensor,
which records EEG data at 250 Hz (250 samples per second).

The SPA was a thick client, meaning that it ran a lot of business logic, such as filtering
raw data for real-time visualisation. This was another technological misstep, as the
client-side JavaScript ecosystem is far inferior to the Python ecosystem that could run
in the backend to handle such tasks. If possible, shipping business logic that could
hold intellectual property to clients should be avoided, if possible, especially with a

commercial product.

The SPA was not connected to a single endpoint on the backend and used the MQTT
stream and the non-real-time aspects of the app (e.g. login or list of recorded EEG
data) via different sources. For example, the MQTT stream was subscribed directly
from the device itself and did not run through AWS Amplify’s API, which made it
cumbersome to couple the systems into a coherent and robust API.

The state of the entire system was difficult to handle due to the decoupled logic from
the MQTT stream and Amplify’s API. Combined with the lack of a hardware heartbeat,
it was tedious to figure out what the user was doing and what was being sent. As an
interim solution, AWS ElastiCache—a provisioned service for in-memory databases
such as Redis—was set up. Unfortunately, the application state was now both handled
in the SPA and simultaneously on ElastiCache, which led to new problems such as

sending EEG data to the void if the user closed the browser during a data stream.
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Appendix C

User interviews and outline

This appendix chapter lists the outline and rough framework used to conduct the user
interviews, as well as the notes taken by the author and IDUN’s product manager, Mark
Melnykowycz, during the interview sessions. The notes are represented in the state they
were in at the time of recording. The focus was on conducting user interviews especially in
the Robbie and Evan personas, as they were the first actual users of the software platform

targeted by the C-level management.

User interview outline for the Robbie persona

Notion PDF export to be found in the file user_interview _with_a_robbie.pdf in the appen-
dices directory in the user interviews subdirectory.

User interview outline for the Evan persona

Notion PDF export to be found in the file user_interview_with_an_evan.pdf in the appen-
dices directory in the user interviews subdirectory.

User interview with Paul Doyle

Notion PDF export to be found in the file user_interview_with_paul.pdf in the appendices
directory in the user interviews subdirectory.

User interview with Ghena Hammour

Notion PDF export to be found in the file user_interview_with_ghena.pdf in the appendices
directory in the user interviews subdirectory.

User interview with Nicole Zahnd

Notion PDF export to be found in the file user_interview_with_nicole.pdf in the appendices

directory in the user interviews subdirectory.
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User interview with Melanie Baumgartner

Notion PDF export to be found in the file user_interview_with_melanie.pdf in the appendices
directory in the user interviews subdirectory.

User interview with Mayank Jain

Notion PDF export to be found in the file user_interview_with_mayank.pdf in the appen-

dices directory in the user interviews subdirectory.

User interview with Martin Hutchings

Notion PDF export to be found in the file user_interview_with_martin.pdf in the appendices

directory in the user interviews subdirectory.

User interview with Jacopo de Araujo

Notion PDF export to be found in the file user_interview_with_jacopo.pdf in the appendices

directory in the user interviews subdirectory.

User interview with Garrett Flynn

Notion PDF export to be found in the file user_interview_with_garrett.pdf in the appendices

directory in the user interviews subdirectory.
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Further implementation key events

This appendix lists other key events that took place during the 10 sprints of the project to
create the next version of IDUN’s NIP.

Python to WebAssembly

Another key event during the 10 sprints took place about two sprints before evaluating the
web-native approach. The idea was that, as mentioned in section 3.4, when it comes to
how important and necessary the Python ecosystem is for IDUN and external people as
presented in the personas, it might be possible to create Python code for specific neural
signal data processing, compile it to WebAssembly (a low-byte compilation target for high-
level languages that run mainly in the browser) and then use it in web applications such as
the GUI application of IDUN’s NIP. Sprint 5 evaluated compiling Python into WebAssembly,
which seemed promising at first but turned out to be too far removed from current capabili-
ties. There is an interesting open-source project called RustPython—a Python interpreter
written in Rust that allows the interpreted code to be compiled in WebAssembly. However,
the project’s maturity is currently unsuitable for production (“RustPython”, 2022).

Another option would be to use Pyodide, which is the CPython interpreter ported to
WebAssembly (“Pyodide”, 2022). Apart from the fact that the creation of a web application
would be drastically more significant if a complete Python interpreter were sent to the
browser, this interpreter also does not currently have the functionality to add additional
Python packages apart from the standard library. This makes it easy to build vanilla Python
on top of WebAssembly codebases, but not with custom packages installed, such as machine-
learning packages needed for EEG classifiers. The only options left were to develop one’s
own Python-to-WebAssembly compiler, contribute to the two open source projects, or give
up the task of embedding Python code in a web application such as IDUN’s GUI application
to interact with NIP’s API. The latter was chosen because it was still too early, immature, and
time-consuming, as the results of Sprint 5 showed.
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Kubernetes and Fargate

One of the first technical decisions the author made involved which technology to use
for creating backends for an n-tier! system such as IDUN’s NIP. The use of a microservice
approach was already established by the fact that a polyglot backend was needed, such as
Python for data-heavy tasks and TypeScript for real-time and API-specific tasks due to the
maturity in the previously mentioned examples of each language. If one decides to take a
microservice approach, it can still be debated whether to proceed with serverless functions
instead of hosting container images. Given the requirement to use AWS mentioned in
section 3.4, the only way to host serverless functions was to use AWS Lambda. AWS Lambda
was already used in the previous PoC version of the software system at IDUN and did not
work as well as in cases where, for example, batch processing of previously collected data
would exceed the maximum computation time or CPU limit of AWS Lambda. This limitation,
coupled with the challenge of handling dozens if not hundreds of serverless functions and
managing the entire collection of multiple functions and their versions and endpoints, led
to the decision not to use Lambda for the most essential and critical parts of the backend
in the author’s experience so far. Building microservices without serverless functions on
AWS provides multiple solutions: the most prominent ones are utilising Kubernetes via AWS
Elastic Kubernetes Service (EKS) or AWS Fargate, which is a serverless version of Kubernetes

(Amazon Web Services, n.d.-d) that makes some parts of Kubernetes easier to handle, as

With Fargate
[T1] -

[1 Build container image Define memory and
compute resources
required

shown in Figure D.1.

Without Fargate
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container image the EC2 Instances compute and memory (
resources

AWS Fargate

9 G
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Isolate applications in Run and manage Pay for EC2 applications r,i;‘;,'f{f:é;:,hiiglﬁﬁ;
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and infrastructure

Fig. D.1: Comparison of Fargate versus other container management
tools (Amazon Web Services, n.d.-d).

IThe term n-tier refers to an architecture design pattern where the logic of presentation, application
processing, and data management are decoupled from each other, as in the case of multiple microservices.
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The author consulted cloud experts in the first sprints from the company Nuvibit to
guide the decision. The author himself is not experienced in Kubernetes and would need to
learn many ways to implement a Kubernetes cluster, which was one of the items to avoid
mentioned in section 3.4. Nuvibit recommended going with AWS Fargate since it is similar
to Kubernetes but abstracts most things away to concentrate on adding business logic rather
than handling the overheads that come with introducing a Kubernetes cluster. Fargate is
also essentially serverless, making it cheaper for a product with hard-to-estimate usage
such as IDUN’s NIP in the beginning; but it still gives enough flexibility in specifying the
underlying hardware for computationally heavier tasks that would exceed AWS Lambda.
As soon as IDUN moves toward large-scale deep learning models that utilise specific GPU
units, Fargate will come to its limits since specifying GPU tasks is impossible (Amazon
Web Services, 2019). One way or another, this decision will have to be reconsidered in the
future to avoid a long-term commitment to one provider such as AWS and to the increasing

investments of Kubernetes from several cloud providers.

Kafka and Kinesis

Another early technical decision, made with the help of expert interviews, concerned which
streaming technology to use. As with many things in software, there are hundreds, if not
thousands, of ways to solve a problem, such as streaming text-based data such as the EEG
data from IDUN'’s device over the internet to the cloud. Initially developed by LinkedIn,
Apache Kafka is a prominent technology for such a use case. It is battle-tested, used in
production by large technology companies (Apache, n.d.) and well maintained by an active
community (Apache, 2022). However, similar to Kubernetes, it comes with much overhead;
moreover, the author himself has no experience with Kaftka, so he would have to learn
everything from scratch. Another option is to use AWS Kinesis, a service that AWS provides
to process data streams over the cloud, as Kafka does, but without the overhead of managing
the Kafka instances themselves. AWS Kinesis allows streams to be replayed, restored, and
sent to an AWS Fargate cluster (e.g. real-time processing of the data) or data to be stored
securely in storage systems such as AWS Simple Storage Service (S3), as shown in Figure D.2.
One important aspect is that the data source can also come from a WebSocket stream, which
will be addressed in the following section. However, the decision for Kinesis was relatively
easy as the reasoning was similar to that between Kubernetes and AWS Fargate. The decision
was also supported by the experience and opinion of the cloud experts at Nuvibit.
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Fig. D.2: Example use-case architecture of AWS Kinesis
(Amazon Web Services, n.d.-a).

MQTT and WebSocket

As previously stated, a decision had to be made regarding the technology to transfer data
from a physical device, such as IDUN’s EEG sensor hardware, to the cloud. Previous en-
gineers at IDUN used MQTT to stream data from the hardware directly to the web app,
as mentioned in Appendix B. MQTT is not well suited to sending high-frequency data in
real-time, such as EEG, and it is geared toward lower-power IoT devices rather than, say, a
computer or smartphone to which the IDUN device would be connected. As a result, the
decision to use something else had to be considered. Another option is to use WebSocket,
which is designed for high-frequency updates that can be updated in real-time in both direc-
tions. IDUN would want to use a high-frequency protocol because HTTP can only handle
about ten requests per second, whereas WebSocket can handle nearly 4000 requests in the
same amount of time. The main reason for this significant difference is that the browser lim-
its the number of concurrent HTTP connections, whereas a WebSocket connection has no
limit on the number of messages it can send or receive (Luecke, 2018). Sending EEG data at
a frequency rate of 250 samples per second from the IDUN hardware and receiving multiple
classification responses from the cloud based on the chosen classification necessitates more
than ten requests per second.

WebSocket also integrates easily with the earlier technology decision for AWS Kinesis,
as Kinesis can subscribe to an API gateway service from AWS that can be used to build
Representational State Transfer (REST) APIs. (This is discussed in greater depth in subsec-
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tion 5.1.2). An internal group discussion with firmware engineers for IDUN’s hardware was
organised to validate this decision, as it was too BCI-specific to ask Nuvibit’s cloud engineers.
The alignment with the firmware roadmap and its interface, which would be necessary for
the BLE library that would consume it was key to the success of building an example N/CI at
IDUN.

IaC with Terraform

As mentioned in the list of bugs and flaws in Appendix B, AWS Amplify took over handling
[aC via AWS CloudFormation. When creating the new version of the system without Amplify,
the author was now free to choose which IaC technology to use. The author could have
again used AWS CloudFormation (but without AWS Amplify), or he could have used the
more modern AWS Cloud Development Kit (CDK), which provides specific syntax in specific
languages for building IaC (Amazon Web Services, n.d.-b). However, there is a well-known
technology in the industry called Terraform—an open source and YAML-based tool from
the company HashiCorp—which is similar to AWS CloudFormation’s JSON syntax in declar-
atively describing IT resources in the cloud. The significant difference, however, is that it is
cloud agnostic, meaning that Terraform can be used to build and deploy IT resources not
only on AWS but also on any cloud provider currently supported by HashiCorp (HashiCorp,
n.d.). Nevertheless, Terraform is currently still in beta, which is usually not a very good sign
for production readiness; nonetheless, Terraform is used in production by various large tech
companies (StackShare, n.d.). Again, Nuvibit’s cloud experts were consulted to decide which
[aC tool to use, as the author had no experience with AWS’ CDK or AWS CloudFormation. As
aresult of the expert interview with Nuvibit, it was clear that Terraform was the right way
forward for IDUN as future multi-cloud setups or other IT resources can also be handled via
Terraform (e.g. Auth0 authentication tenant setups, GitHub organisation setups via [aC, and
others). In addition, the author already had experience with Terraform, which was another
argument for using this.

The decision to use Terraform was also made relatively early in the process and laid the
foundation for every infrastructure built after that to be based on Terraform code. Tools
such as Infracost and #fsec were set up as part of the bootstrapping project stages in order to
assure quality in the form of linting over IaC code via #fsec in continuous integration and
continuous delivery (CI/CD) pipelines or calculating price estimations based on IaC code as
soon as writing it in the editor via the Infracost add-on.
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Python SDK

The key event labelled ‘Python SDK’ in Figure 4.2occurred quite late in the process but was
one of the important events. It describes the realisation of creating a public and private
Python library mainly for the Noel persona. The realisation followed internal group discus-
sions with the neuroscience team at IDUN. Before these internal group discussions, the
author assumed that a GUI application such as the Console application of IDUN’s NIP in
combination with an API and a client-side library would suffice for applications created
by Evans. However, as mentioned in the last point of the user interviews listed in subsec-
tion 4.2.1, there would need to be a way to control the EEG data collected by IDUN’s device
and synchronise it locally with other data sources, such as heart rate data, without having to
send the data to the cloud?.

Internet streaming

[ )

End-user device IDUN’s cloud
(i.e. smartphone) environment
Public SDK

Private SDK Private SDK

Microservice A Microservice B

BIJ:E
Pre-processing Post-processing
Guardian hardware
Stored EEG data
e ~ ”
B N
SN—

Fig. D.3: Overview of where the public and private SDK can be utilised in
multiple microservices on the IDUN cloud.

Noel would use a GUI application such as the idea for the console application of IDUN’s
NIP. However, they would nonetheless still like to have low-level control of the data to include

2The reason for this is that one cannot synchronise data sufficiently over an internet network due to latency
problems or time drifts.
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it in PsychoPy experiment scripts or to connect the data via an LSL stream to a reference
EEG device to compare EEG signals (which is particularly important for IDUN’s internal
researchers).

For this, they would need a library that allows them to connect to the device without
an app, if possible, only for research purposes. After the internal group discussions with
the neuroscience department, the author proposed building an SDK that does precisely
this. Parts of this SDK can also be made public as part of the software offerings from IDUN,
such as connecting to a device for limited research purposes or to visualise plots specifically
made for IDUN’s EEG data, which was also mentioned as one of the user interview insights
in subsection 4.2.1. An internal SDK version of this can be used to include raw data from pre-
and post-processing pipelines that are all part of IDUN’s provided intellectual property and
should not be made public. Nonetheless, this internal SDK can be used in the neuroscience
team and in production—for example, Python microservices that process data on the cloud,
as depicted in Figure D.3.

The reason why one would want to have that is that if a data engineer creates a new
pipeline for processing EEG data that can be used in research or even in production for a
microservice, then they would all need to have the exact source of the code. An internal
Python package for the SDK is the solution for this. This realisation came fairly late and is,

as of this writing, still ongoing.
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Design artefacts

In this appendix, design artefacts are displayed that were created during the 10 sprints of
the project to create the next version of IDUN’s NIP.

Console web app wireframes

The following wireframes are the result of user interviews and internal group discussions.
The following figures show the future version of the Console web application for IDUN,
which is scheduled for release in early 2023.
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Fig. E.1: Screenshot No. 1 of an exploratory draft for the web version of
the Console to be released in early 2023.

Figure E.1 demonstrates the ability to create deployable neural signal processing pipelines
via a drag-and-drop no-code editor.

Figure E.2 shows how, in addition to the visual no-code editor, advanced users, such as
the Evan persona, can also work directly on code generated via the IDUN SDK.
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Fig. E.2: Screenshot No. 2 of an exploratory draft for the web version of
the Console to be released in early 2023.

Authentication web app wireframes

The following wireframes are the result of internal group discussions, expert interviews and,
in particular, the findings of IDUN Technologies’ neuroethics advisory board in order to
protect user privacy and restrict access to the generated insights and raw EEG data. The
following figures show the future version of an authentication web app for IDUN, scheduled
for release in early 2023.

Figure E.3 shows how a slide-over would look in the third-party app if no device from
IDUN is connected to, for example, a smartphone. After searching for BLE devices with
certain characteristics, the nearest device is displayed with the option to connect to it.
After this process, the SDK integrated in the third-party app checks whether this device is
registered in the IDUN cloud with this identifier.

Figure E.4 shows how the process would look if IDUN’s device is not yet registered in
the cloud, for example, the opt-in for the specific third-party app in this example is not yet
granted. Therefore, the user must authenticate with a device password (which they must

reset the first time they use it) and then select specific options to which they agree.
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Fig. E.3: Screenshot No. 1 of an exploratory wireframe draft for the
version of the authentication web app to be released in early 2023.
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Fig. E.4: Screenshot No. 2 of an exploratory wireframe draft for the
version of the authentication web app to be released in early 2023.
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Attached repositories

This appendix lists and describes the attached repositories, that is, the code produced during
the 10 sprints to create the new version of IDUN’s NIP and the source code of the written

part of this project.

idn-guardian-cloud

This repository is a monorepo that contains the infrastructure for the cloud for IDUNs N/CI
at the time of writing.

idn-guardian-console

This repository contains the source code for the Console web app for IDUNs N/CI at the
time of creation. It also contains an example of exporting an iOS and Android app.
idn-guardian-sdk

This repository is a monorepo containing the source code of the Guardian SDK, IDUN’s
public SDK. It contains all files at the time of writing and is not complete as most of the
business logic, for example, to connect to the BLE device, is handled in the Console web app
repository.

idn-internal-sdk

This is a shallow Python repository that will host the internal SDK for IDUN’s backend

microservices.
spatial-place

This is the actual repository where the work was written in LaTeX. It contains all source files,
READMEs and other information.
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Other documents

This appendix lists further documents and artefacts attached to this thesis, such as more
detailed documentation of the topics mentioned in the thesis.

Customer personas documentation

Notion PDF exports of all persona pages can be found in the files inside the appendices
directory in the personas subdirectory.

Web-first approach proposal

Notion PDF export to be found in the file web-first_approach_proposal.pdf in the appendices
directory in the web-first approach proposal subdirectory.

Other documentation

Other documentation can be found as Notion PDF exports in the appendices directory
in the other docs subdirectory. An example is the documentation on setting up the AWS
organisation or the documentation on the data model.
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