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Abstract—The potential of machine learning can be significant
in revolutionizing clinical studies on human sleep. Enabling a
machine to diagnose the sleep stages could alleviate the workload
for clinicians. Here, we revisit the task of classifying sleep stages
by applying machine learning algorithms. We have proposed a
combination of Empirical wavelet transformation (EWT) based
feature extraction and Boruta feature selection approach for
automated classification of sleep stages. Various multi-domain
features were extracted from intrinsic mode functions(IMF) of
EWT. We have used two publicly available datasets in this
research work. The proposed work performed better as compared
to existing works in terms of classification accuracy.

Keywords—Sleep staging, Empirical Wavelet Transform,
Boruta Algorithm, EEG signals

I. INTRODUCTION

Everyone sleeps around one-third of their life on average.
However, not everyone can have the same quality of sleep.
Machinery, stressful life, and psychological and neurological
disorders can disturb sleep quality. Poor sleep can lead to
drowsiness, fatigue, irritation and impact cognitive actions. To
diagnose sleep, it is vital to study the stages of sleep and score
the quality of sleep.

Sleep scoring, also known as sleep staging, involves us-
ing a polysomnograph (PSG) to record data from various
sources, including electroencephalogram (EEG), electroocu-
logram (EOG), electromyogram (EMG), electrocardiogram
(ECG), oxygen saturation, and airflow. Sleep experts manually
annotate epochs, typically lasting 30 seconds, to classify sleep
stages based on established guidelines like Rechtschaffen and
Kales (R&K) and the American Academy of Sleep Medicine
(AASM).

The R&K classification categorizes stages into Wakefulness,
Non-Rapid Eye Movement (NREM) with four sub-stages
(S1, S2, S3, and S4), and Rapid Eye Movement (REM).
AASM has updated guidelines, defining wakefulness (W),
three intermediate stages (N1, N2, N3), and REM. A full sleep
cycle typically lasts 90 to 110 minutes, and this cycle repeats
throughout the night [12]. As the night progresses, we spend
less time in deeper sleep stages and more time in REM sleep,
experiencing this cycle four or five times on an average night.
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Sleep scoring is a complex and time-consuming process if
done manually by humans as per standards. Moreover, manual
annotation is prone to human error and subjective bias. Various
machine learning and deep learning models are present to
automate sleep classification, but still, humans are considered
the standard for sleep scoring. The contributions of our study
are as follows: We extracted various features from the intrinsic
mode function (IMF) of the Empirical Wavelet Transform
(EWT). This gave us improved performance. We selected the
important features needed for the classification. We discussed
the relevance of channel and ML classification algorithms to
be used for sleep scoring

The whole research article is organised as follows. Section
2 shares insights into the related works in the sleep stage clas-
sification domain. Section 3 discusses the proposed approach.
A brief introduction about dataset used is given in section
4. Section 5 shares the evaluations of the results. conclusion
along with future directions is given in Section 6.

II. RELATED WORK

Multiple combinations of features and classifiers have been
used to detect sleep stages accurately [16]. [2] reviewed
suitable methods for pre-processing, feature extraction and
selection for sleep scoring and gave an accuracy value of
88.7% with a random forest classifier. [12] extracted fea-
tures from the signal’s decomposed frequency bands, and the
best features were selected using the minimum redundancy
maximum relevance (mRMR) algorithm. [19] proposed using
bubble entropy and dispersion entropy-based sleep staging
combined with multivariate fixed boundary empirical wavelet
transform (MFBEWT) technique on the multiple channel EEG
data. [14] proposed the range entropy and [4] investigated the
importance of Range Entropy in sleep staging. [20] developed
a python package YASA that aims to be easily scalable and
flexible.

III. METHODOLOGY

In this work, we proposed a 3 step multi domain feature
approach for automated sleep stage classification. In the first
step, we decomposed the signal into 3 intrinsic mode functions
(IMF) using EWT. In the second step, we extracted various
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Fig. 1. Proposed sleep staging

multi-domain features from these IMFs. In this step, 16 time-
frequency domain features from each IMF are extracted. We
also extracted the Higuchi fractal dimension directly from
signal and 17 frequency domain features using power spectral
density (PSD) as shown in table I. Thus a total of 66 features
per epoch, per channel were used in this study. In step 3, we
performed Boruta feature selection to measure the importance
of each feature. Fig. 1 depicts the process followed in this
paper.

A. Emperical Wavelet Transformation

Due to the distinct frequency ranges of various compo-
nents in EEG signals, researchers in composite algorithms
have increasingly explored the application of decomposition
techniques, such as Empirical Mode Decomposition (EMD)
and Empirical Wavelet Transform (EWT) [3] etc. The EWT
technique is employed to derive diverse components of the
Fourier spectrum from the EEG signal by creating an adaptive
wavelet filter bank. An overview of the EWT is given below:

1) Employ the FFT algorithm to acquire the spectrum of
the Signal.

2) Identify all local maxima within the spectrum.
3) Determine boundaries based on the distances between

local maxima.
4) Partition the spectrum in accordance with the established

boundaries.
5) Formulate empirical wavelets and conduct signal decom-

position into distinct components.

Each of the decomposed component is called Intrinsic Mode
Function (IMF). We have decomposed our signal into 3 IMFs
and extracted features from each IMF.

B. Feature Extraction

Feature extraction involves pulling out a group of traits to
create a meaningful and condensed data representation. EEG
signals are non-stationary, and thus, there are various methods
available to study the time domain, frequency domain and

TABLE I
FEATURES EXTRACTED

Feature Extracted from each signal: Higuchi fractal dimension

Features extracted from each decomposed IMF
Mean Skewness
Variance Kurtosis
Range Zero Crossing Count
Root Mean Square Hjroth mobility
Standard Deviation Hjroth complexity
IQR Petrosian Dimension
Range Entropy Permutation Entropy
Sample Entropy Spectral Entropy

Frequency Domain Features
Sum Mean
Variance Skewness
Kurtosis Shannon Entropy
Median Absolute spectral power
Relative spectral power in: Spectral power ratio of:

Delta Band (0.4-4 Hz) Alpha / Theta
Theta band (4-8 Hz) Delta / Beta
Alpha band (8-12 Hz) Delta / Sigma
Sigma band (12-16 Hz) Delta / Theta
Beta band (16-30 Hz)

time-frequency domain independently. We calculated 66 multi-
domain features (extracted from time and frequency domain)
per 30 sec epoch.

1) Time Frequency Domain: EEG signals exhibit multiple
frequency modulations. Breaking down these signals into
Intrinsic Mode Functions (IMF) gives a detailed understanding
of fundamental characteristics. We used EWT to decompose
into 3 IMFs. The features we extracted are:

• Statistical Parameters: Commonly employed time domain
features for EEG signals include the 1st to 4th-order mo-
ments, which correspond to the mean, standard deviation,
skewness, and kurtosis, respectively. Along with these, we
also extracted the root mean square, Peak-to-peak range,
variance, and IQR range of the signal distribution.

• Hjroth Parameters: Hjroth mobility Hm and Hjroth com-
plicity Hc [7] of a time series e(t) tell the proportion of
standard deviation (σ) of the power spectrum and change
in the frequency, respectively. They are formulated as:

Hm =
σ(e′(t))

σ(e(t))
;Hc =

Hm(e′(t))

Hm(e(t))

• Zero Crossing Count ( ZCC ) The Zero Crossing Count
(ZCC) tells us how many times a signal crosses a mean
value of the signal. Since different sleep stages exhibit
distinct characteristics in the time domain, ZCR can vary
between stages.

2) Non Linear Features: The presence of nonlinear charac-
teristics such as the Persian fractal dimension and the Higuchi
fractal dimension contributes significantly to understanding the
irregularity within signals. A diminished fractal dimension,
signifying high irregularity, is correlated with elevated neu-
ronal activity and is presumed to be connected with the N1 or
REM sleep stage. The two non-linear features used in study
are:
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• Petrosian Fractal Dimension (PFD): It indicates signal
complexity based on chaotic dynamics. In a time series
comprising N data points, the [15] PFD is rapidly com-
puted by converting the time series into binary sequences.
In this binary representation, 1 denotes a positive differ-
ence between successive data points, while -1 indicates a
negative difference. The PFD estimation can subsequently
be calculated using the following formula:

PFD =
log10 N

log10 N + log10
N

N+0.4∗Nσ

where Nσ is the number of changes in the sign of the
binary sequence.

• The Higuchi fractal dimension (HFD) [6]: Typically, the
autocorrelation demonstrated by a signal is perceived as
fractal in nature. Certain segments of the signal exhibit
resemblances to the signal itself, and this resemblance
recurs recursively. HFD serves as a quantitative gauge
of this resemblance. It was directly derived from the
signal to quantify its nonlinear characteristics, reflecting
the complexity of the waveform in the time domain.

3) Entropy based features: Entropy serves as a metric
for assessing randomness and acts as an indicator of system
complexity. High entropy in an epoch indicates a probable
association with N1 or REM stages. Shannon’s information
entropy is computed using the expression −

∑
j pj log pj ,

where pj represents the probability distribution of the observed
data. In EEG analysis, numerous derived variations of infor-
mation entropy are employed. We considered the entropies:
Permutation entropy [1], Range entropy [14], Spectral Entropy,
Sample entropy and Shannon entropy.

4) Frequency based Features: We used the Welch Power
Spectral Density (PSD) to analyse the frequency characteristics
of signals. This helped us to understand how the energy in the
signal is distributed across different frequency bands which are
the delta (0.4-4.0 Hz), theta (4.0-8.0 Hz), alpha (8.0-12.0 Hz),
sigma (12-16 Hz) and beta (16.0-30.0 Hz). We also measured
the total power of the wide-range signal and calculated power
ratios, including δ

θ , δ
σ , δ

β , and α
θ along with other statistical

features.

C. Feature selection with Boruta Algorithm

Feature selection aims to achieve a minimal and optimal set
of features, essentially seeking the smallest yet most effective
feature subset. We used the Boruta algorithm [9] [10] in this
study, which is a wrapper-based method centred around a
Random Forest (RF) classifier. The Boruta algorithm extends
feature information by creating shadow features through du-
plication and attribute shuffling. Using a random forest (RF)
classifier, it calculates the mean decrease impurity (MDI)
matrix to determine the importance of shadow features.

The Boruta algorithm follows a systematic process outlined
as follows [11]:

1) Initiate the feature set by including all original features.
2) Generate shadow features by randomly permuting the

values of the original features.

3) Train a machine learning model utilizing both the orig-
inal and shadow features.

4) Assess the significance of each original feature by com-
paring it with its corresponding shadow features. Various
metrics such as Gini impurity, information gain, and
feature weights can be employed to quantify relevance.

5) Determine the statistical significance of a feature
by comparing its importance against a predetermined
threshold. A feature is considered significant if its impor-
tance surpasses the cumulative importance of its shadow
counterparts.

6) Remove unnecessary features from the feature list.
7) Iterate through steps 2 to 6 until all features are either

accepted or rejected.

Shadow features are generated by shuffling the values of
the original features while preserving the target variable.
Boruta evaluates the statistical significance of each feature
by comparing its importance with that of its corresponding
shadow feature. Features confirmed by Boruta at the end of
the algorithm are considered suitable for the prediction task,
while those rejected are deemed unimportant.

Boruta offers several advantages. It exhibits versatility by
accommodating various types of machine learning models,
encompassing both tree-based and non-tree-based algorithms.
It effectively handles interactions and redundancy among
features. Moreover, Boruta demonstrates resilience to noise,
yielding stable outcomes even in the presence of noisy
datasets. It also introduces randomness to identify truly es-
sential features based on statistical significance. However,
it’s crucial to acknowledge that Boruta may not unfailingly
pinpoint the optimal subset of features. Its performance can
be impacted by the selection of the importance threshold
and the quality of the feature importance metric employed.
Furthermore, Boruta’s computational demands can escalate,
especially when dealing with datasets containing numerous
features.

IV. DATASET AND EXPERIMENTAL SETUP

NTX Challenge Dataset: NeuroTechX conducted the
Hackathon’23 across the globe in Dec 2023. Under the cat-
egory of data challenge, EEG data of sleep stages was re-
leased on https://www.codabench.org/competitions/1777/ [22].
The data was collected with IDUN Guardian Earbuds, with
a sampling frequency of 250 Hz, with two tip-shaped dry
electrodes, one for each ear. The reference electrode is in the
left ear canal, and the measuring electrode is in the right ear
canal. Data from 4 subjects was collected, each with one night
of recorded sleep. Per the competition rules, training was to
be done on subjects two and three, validation on subject four
and testing on subject 1. The labels were binary encoded,
indicating the presence of sleep neuromarkers: spindles, K-
complexes, Rapid Eye Movements, Sleep Onset, Sleep Off-set,
arousal, and Microsleep. Thus, for each epoch of 30 sec, we
have 14 binary labels, making the challenge a multiple class
Machine learning Challenge with class imbalance.
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Sleep EDF (Expanded) Dataset: We also implemented the
proposed model on the publicly available sleep EDF expanded
database on Physionet [8]. The sleep cassette has 153 PSG
recordings. This study used the two EEG signals at Fpz and
Pz of about 10 h each, sampled at 100 Hz. Subsequently, each
30-second epoch is categorized into sleep stages (W, N1, N2,
N3, N4, REM) based on the R&K manual. For alignment with
AASM recommendations, classes N3 and N4 are consolidated
into a single stage labelled N3.

The two datasets used in this study have different struc-
tures. The first dataset by NTX has multiple class binary
encoded labels indicating the presence or absence of sleep
neuromarkers: sleep spindles, K complexes, REM, Sleep onset,
sleep offset, arousal and Microsleep. On the other hand, the
labels of the second dataset are a single 1D array stating the
sleep states of the epochs. [17] Fig. 2 depicts the presence
of various sleep neuromarkers among the states of sleep.
The first stage of sleep N1 is a transitional phase between
wakefulness and sleep, the period when sleep onsets. During
this period, there is a slowdown in respiration and heartbeat,
muscle tension and core body temperature. Sleep spindles -
a rapid burst of high-frequency EEG signals, and K-complex
- a very high amplitude pattern of EEG signals is found in
stage N2. Arousals may occur within stages N1, N2, N3, or
R if there is an abrupt shift in EEG frequency, encompassing
alpha, theta, or frequencies more than 16 Hz for a minimum
duration of 3 seconds. Additionally, at least 10 seconds of
stable sleep should be preceding the observed abrupt change.
[21]. Microsleeps are brief movements in which the brain falls
asleep only to snap back awake. In our dataset, the presence
of microsleep marks the offset of sleep.

A. Pre-Processing

The datasets present challenges with class imbalances. The
difference between the number of epocs corresponding the
the Wake state and deep sleep state varies greatly. Thus the
initial 30 mins of Wake state was removed from the datasets.
The datasets were high-pass filtered with a cutoff frequency
of 30 Hz. For the first dataset, Data of subjects 2 and 3
were concatenated together to shape (2240 epochs, 2 channels,
7500 time points). The binary encoded labels were of shape
(2240, 14). For the second dataset, we segmented the data into
epochs of shape (836 epochs, 2 channels, 3000 time points).
The corresponding number of epochs of W, N1, N2, N3 and
REM are 183, 58, 250, 220 and 125 respectively. Both datasets
have two signals. So we experimented thrice, once with each
channel and then with a combination of both channels.

B. Classification

To evaluate the selected features’ relevance, we split the
dataset into train data and test data at a ratio of 80:20. We
used random forest, SVC, logistic regression, decision tree,
and Gaussian NB classification models. First, all the features
were selected, and then the best 30 features chosen with high
importance scores were used with the algorithms.

Fig. 2. Presence of sleep markers in sleep states (Adapted from [17])

V. EVALUATIONS

A. Importance of Features

Fig. 3 illustrates the importance score of all features. The
suffix after each feature denotes the Intrinsic Mode Function
(IMF) from which the feature was extracted. Across all
experiment runs, the importance order remained consistent.
Features extracted from the third IMFs were relatively more
important than those from the second and first IMFs. The
blue boxplots represent the Z scores of the shadow attribute,
specifically depicting the values for Shadow Minimal, Shadow
Mean, and Shadow Maximum. Features coloured in red were
deemed irrelevant due to poor importance scores, including
skewness, kurtosis, Hjroth Complexity, and mean. [4] claimed
the importance of Range entropy in sleep staging. It has a
good importance score, but it increases the time taken to
run by around 4 times. Permutation Entropy and Petrosian
Dimension extracted from the third IMF emerged as the
features with the highest importance, followed by the relative
spectral power in the delta and alpha bands. We can see that
the importance gradually becomes constant after 20 features,
and then suddenly dips after 30 features. Thus 20 best features
with the highest importance score in fig. 3 are selected.

B. Channel Relevance

All tests were performed in triplicate, first with Fpz-Cz, then
Pz-Oz, and finally with both channels for dataset 2. Extracting
features from both channels yielded better results compared
to individual runs. Notably, the frontal area channel showed
superior performance, as depicted in fig. 4 and fig. 5. The
reason for the better performance of Fpz-Cz is its ability to
capture a wide range of frequencies, including delta activity,
K-complexes, and lower-frequency sleep spindles, which are
vital for sleep staging. Whereas the Pz-Oz channel focuses on
Theta activity and higher-frequency sleep spindles. [13]

C. Classifiers

For the first dataset, only Random forest, KNN, and decision
tree were used due to its nature of binary multiclass labels. For
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Fig. 3. Importance score of the features selected in study

Fig. 4. Accuracy and F1 score of NTX Challenge with various classifiers

Fig. 5. Accuracy and F1 score of Sleep EDFx with various classifiers

Fig. 6. Accuracy of SVC on sleep EDFx dataset with various selected features

the dataset of sleep EDFx, The extracted features were trained
on machine learning models, including Random Forest(RF),
Support Vector Classifier (SVC), K-Nearest Neighbors (KNN),
Logistic Regression(LR), Decision Tree(DT), and Gaussian
Naive Bayes(GNB). Support Vector Classifier outperformed
all others, as shown in fig. 4 and fig. 5, illustrating the
performance of classifiers on both datasets.

D. Optimal solution

We selected only the best 20 features from fig. 3 and
tested the accuracy score for all the datasets. Since SVC
performed best, as in fig. 4 and fig. 5, we performed the
final run only with SVC. Fig. 6 and fig. 7 show the SVC’s
accuracy change when the best features were selected for
both datasets. We can see that the accuracy in all the cases
peaked at 20 features. Although the change in accuracy is
minor, the computational complexity is reduced by one-third.
Thus our feature selection helped to reduce the computational
complexity, while maintaining the accuracy.
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Fig. 7. Accuracy of SVC on NTX dataset with various selected features

TABLE II
COMPARISION OF PROPOSED STUDY WITH EXISTING SLEEP SCORING

STUDIES (WITH THE SINGLE CHANNEL) ON THE EXPANDED DATASET OF
SLEEP EDFX

Study Fpz-Cz Pz-Oz
Accuracy F1 Score Accuracy F1 Score

SleepEEGNet [13] 84.3 79.7 77.6 70
DeepSleepNet [18] 82 79.6 79.8 73.1

1D-CNN-HMM [23] 83.9 76.9 83.2 74.7
LDFASSC [5] 88.5 81 87.6 75.2

Proposed Approach 92.86 90.44 89.88 84.74

E. Comparision with the existing work

The dataset provided by NTX is novel, and no one has
worked on it. Table II shows the comparison of the proposed
model with existing sleep scoring (with the single channel) on
the EDFx dataset.

VI. CONCLUSION AND FUTURE WORK

This study focuses on classifying sleep neuromarkers like
spindles, K-complexes, REM, arousal, and microsleeps in the
first dataset and identifying sleep stages in the second dataset.
Feature extraction was performed on signals decomposed
using Empirical Wavelet Transform. The Boruta algorithm
helped pick out the most important features. Although keeping
these features only increased accuracy by about 2 per cent on
average, it significantly simplified the computational process.
Using the features, we trained different machine learning
models, and the Support Vector Classifier showed the most
promising results. With the enhanced performance of our
approach, we anticipate its potential application in diagnosing
and treating sleep disorders. With the 20 best-performing
features, we got the accuracy/F1 score of 69.33 % / 56.47%
with the first dataset and 91.07% / 90.44% with the sleep
EDFx dataset using just one EEG channel.
We experience a cycle of sleep stages approximately 4-5
times during the night. Consequently, the distribution of sleep
stages is time-dependent. Including time as a feature in future
research may enhance the model’s accuracy. One limitation is
that this study used a relatively small dataset. When dealing
with a larger dataset, the differences in the training data for
each sleep stage might impact the accuracy differently.
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